000848387 001__ 848387
000848387 005__ 20240712112827.0
000848387 0247_ $$2doi$$a10.1016/j.jmr.2018.10.003
000848387 0247_ $$2ISSN$$a0022-2364
000848387 0247_ $$2ISSN$$a1090-7807
000848387 0247_ $$2ISSN$$a1096-0856
000848387 0247_ $$2ISSN$$a1557-8968
000848387 0247_ $$2pmid$$apmid:30347386
000848387 0247_ $$2WOS$$aWOS:000453112500005
000848387 0247_ $$2altmetric$$aaltmetric:49727359
000848387 037__ $$aFZJ-2018-03628
000848387 041__ $$aEnglish
000848387 082__ $$a530
000848387 1001_ $$0P:(DE-Juel1)192562$$aKöcher, Simone Swantje$$b0$$eCorresponding author
000848387 245__ $$aChemical shift reference scale for Li solid state NMR derived byrst-principles DFT calculations
000848387 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000848387 3367_ $$2DRIVER$$aarticle
000848387 3367_ $$2DataCite$$aOutput Types/Journal article
000848387 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542786378_17915
000848387 3367_ $$2BibTeX$$aARTICLE
000848387 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848387 3367_ $$00$$2EndNote$$aJournal Article
000848387 520__ $$aFor studying electrode and electrolyte materials for lithium ion batteries, solid-state (SS) nuclear magnetic resonance (NMR) of lithium moves into focus of current research. Theoretical simulations of magnetic resonance parameters facilitate the analysis and interpretation of experimental Li SS–NMR spectra and provide unique insight into physical and chemical processes that are determining the spectral profile. In the present paper, the accuracy and reliability of the theoretical simulation methods of Li chemical shielding values is benchmarked by establishing a reference scale for Li SS–NMR of diamagnetic compounds. The impact of geometry, ionic mobility and relativity are discussed. Eventually, the simulation methods are applied to the more complex lithium titanate spinel (Li4Ti5O12, LTO), which is a widely discussed battery anode material. Simulation of the Li SS–NMR spectrum shows that the commonly adopted approach of assigning the resonances to individual crystallographic sites is not unambiguous.
000848387 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000848387 588__ $$aDataset connected to CrossRef
000848387 7001_ $$0P:(DE-Juel1)168465$$aSchleker, Peter Philipp Maria$$b1$$ufzj
000848387 7001_ $$0P:(DE-Juel1)161347$$aGraf, Magnus Frederic$$b2
000848387 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$ufzj
000848387 7001_ $$0P:(DE-HGF)0$$aReuter, Karsten$$b4
000848387 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b5$$ufzj
000848387 7001_ $$0P:(DE-HGF)0$$aScheurer, Christoph$$b6
000848387 773__ $$0PERI:(DE-600)1469665-4$$a10.1016/j.jmr.2018.10.003$$gp. S1090780718302428$$p33-41$$tJournal of magnetic resonance$$v297$$x1090-7807$$y2018
000848387 8564_ $$uhttps://juser.fz-juelich.de/record/848387/files/1-s2.0-S1090780718302428-main.pdf$$yRestricted
000848387 8564_ $$uhttps://juser.fz-juelich.de/record/848387/files/1-s2.0-S1090780718302428-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000848387 909CO $$ooai:juser.fz-juelich.de:848387$$pVDB
000848387 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-Juel1)192562$$aTechnische Universität München$$b0$$kTUM
000848387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192562$$aForschungszentrum Jülich$$b0$$kFZJ
000848387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b1$$kFZJ
000848387 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)168465$$aMPI Mülheim $$b1
000848387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
000848387 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
000848387 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-HGF)0$$aTechnische Universität München$$b4$$kTUM
000848387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b5$$kFZJ
000848387 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b5$$kRWTH
000848387 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-HGF)0$$aTechnische Universität München$$b6$$kTUM
000848387 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000848387 9141_ $$y2018
000848387 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000848387 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848387 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000848387 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON : 2017
000848387 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848387 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000848387 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000848387 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000848387 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000848387 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848387 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848387 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000848387 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000848387 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000848387 920__ $$lyes
000848387 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000848387 980__ $$ajournal
000848387 980__ $$aVDB
000848387 980__ $$aI:(DE-Juel1)IEK-9-20110218
000848387 980__ $$aUNRESTRICTED
000848387 981__ $$aI:(DE-Juel1)IET-1-20110218