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For highly non-uniformly flowing fluids, there are contributions to the stress related to spatial varia-
tions of the shear rate, which are commonly referred to as non-local stresses. The standard expression
for the shear stress, which states that the shear stress is proportional to the shear rate, is based on
a formal expansion of the stress tensor with respect to spatial gradients in the flow velocity up to
leading order. Such a leading order expansion is not able to describe fluids with very rapid spatial
variations of the shear rate, like in micro-fluidics devices and in shear-banding suspensions. Spatial
derivatives of the shear rate then significantly contribute to the stress. Such non-local stresses have
so far been introduced on a phenomenological level. In particular, a formal gradient expansion of the
stress tensor beyond the above mentioned leading order contribution leads to a phenomenological
formulation of non-local stresses in terms of the so-called “shear-curvature viscosity”. We derive an
expression for the shear-curvature viscosity for dilute suspensions of spherical colloids and propose
an effective-medium approach to extend this result to concentrated suspensions. The validity of the
effective-medium prediction is confirmed by Brownian dynamics simulations on highly non-uniformly
flowing fluids.© 2018 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5035268

I. INTRODUCTION

Complex fluids can exhibit flow profiles in which there
are unusually large spatial gradients in the local shear rate. For
these highly non-uniformly flowing systems, there are contri-
butions to the stress that arise from spatial variations of the
shear rate, which are referred to as non-local stresses. Such
large spatial gradients in the shear rate occur, for example,
in micro-channel fluidics devices. Due to these large gradi-
ents, flow profiles in micro-channels cannot be described on
the basis of the standard expression for the stress tensor. It
is shown in Ref. 1 that non-local stresses are a necessary
ingredient to describe the flow profiles of worm-like micellar
systems in micro-channels with sufficiently large dimensions
to describe the micellar solution as a continuum. Highly non-
uniform flow profiles also occur when a fluid exhibits an
instability that leads to gradient-banded flows. In the station-
ary state, two regions (the “bands”) with spatially constant
shear rates coexist. The shear rates within the bands are differ-
ent for the two bands. The bands are connected by a sharp
interface, where gradients in the shear rate are very large.
There are two types of gradient-banding instabilities. A uni-
form flow profile is unstable when the stress decreases with
increasing shear rate. In such cases, a transition occurs to a
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stable gradient-banded flow profile. Gradient-banding can also
occur due to shear-gradient induced mass transport. Migra-
tion of particles from regions of high shear rate to regions of
low shear rate leads to concentration variations that in turn
give rise to gradient-banded flow profiles. Two recent theo-
retical developments on shear-gradient induced diffusion of
colloids and polymers can be found in Refs. 2 and 3, respec-
tively. For both types of shear-banding scenarios, it is essential
to include non-local stresses in the constitutive modeling of
gradient-banding transitions, in order to account for the rapid
spatial variations of the shear rate within the interface that
connects the two bands. There are many different types of
complex fluids which exhibit gradient-banding transitions.
The most extensively studied systems that exhibit gradient
banding are worm-like micellar systems (the early studies
of these systems include Refs. 4–9). Gradient banding also
occurs in entangled polymers,10–14 micellar cubic phases,15,16

supra-molecular polymer solutions,17 transient networks,18

thermotropic liquid-crystalline polymers,19 hexagonal phases
of surfactant solutions,20 hard-sphere suspensions,2,21 soft
glasses of charged colloidal rods,22 metallic glasses,23 and
foams.24 Gradient banding is sometimes the result of a shear-
induced second phase, which has been observed in lamel-
lar surfactant systems,25–27 in a semi-flexible thermotropic
liquid-crystalline polymer,28 and in poly-crystalline col-
loids.29–33 Review papers that address shear-banding phenom-
ena include Refs. 34–44. For all the above mentioned systems,
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non-local stresses are essential in the constitutive modeling of
the interface between the shear-bands.

The standard expression for the deviatoric part of the stress
tensor for isothermal incompressible fluids reads

Σ = −p Î + 2 η E, (1)

where p is the pressure, Î is the identity tensor, η is the vis-
cosity, and E = (1/2)[∇v + (∇v)T ] (where “T” stands for
transpose) is the symmetric part of the velocity gradient ten-
sor ∇v of the fluid velocity v. This standard expression is
obtained by formally expanding the stress tensor to first-order
in gradients of the fluid velocity. There are two ways in which
non-local stresses can be formulated. (i) A diffusive term can
be added to the equation of motion for the stress tensor (see,
for example, Refs. 45–48), where the corresponding diffusion
coefficient is referred to as the stress-diffusion coefficient. Such
a constitutive approach has been used to determine the stress
diffusion coefficient for a micellar system from the kinetics
of band formation.49 This formulation of non-local stresses
has also been applied to analyze the stability of the interface
between gradient-bands,50 where an undulation instability of
the interface can give rise to vorticity banding.51 (ii) Another
possibility to include non-local stresses is to simply extend
the formal expansion of the stress tensor with respect to spa-
tial gradients to include the next higher-order spatial derivative
of the flow velocity, as compared to the leading order expan-
sion in Eq. (1).48,52,53 For incompressible systems, this leads
to

Σ = −p Î + 2
[
η − κ ∇2

]
E, (2)

where κ is referred to as the shear-curvature viscosity.52 The
minus sign in the non-local stress contribution renders κ posi-
tive. This is the constitutive equation that has been successfully
used in Ref. 1 to describe the flow profiles of worm-like
micellar systems in micro-channels.

Note that the shear-gradient contribution to the stress
tensor can be formulated within a general linear response
approach for inhomogeneous systems as

Σ(r) =
∫

dr′ S(r, r′) E(r′), (3)

where the “viscous-stress kernel” S is zero for distances
|r − r′ | larger than the range of correlations between fluid
elements. Gradient expanding the velocity gradient tensor as

E(r′) = E(r) + (r′ − r) · ∇E(r)

+
1
2

(r′ − r)(r′ − r) : ∇∇E(r) + · · · (4)

identifies the viscosity and the shear-curvature viscosity in
terms of moments of the viscous-stress kernel,

η(r) =
1
2

∫
dr′ S(r, r′),

κ(r) =
1
4

∫
dr′ | r′ − r |2 S(r, r′).

(5)

The present theory describes non-local stresses in bulk,
away from boundaries. Non-local stress/velocity-gradient
relations, as formally given in Eq. (3), can also arise in con-
finement due to local modifications of the bulk viscosity. A
detailed study of nanoscopically confined water by two sheared

hydrated surfaces leading to such non-local stresses can be
found in Ref. 54.

So far there are no (semi-)microscopic considerations to
derive the constitutive relation in Eq. (2), which allow us to
predict the magnitude of non-local stresses in bulk and, in
particular, to predict or estimate the numerical value of the
shear-curvature viscosity. It is the purpose of this paper to
verify that the non-local stress contributions are of the form,
as given in the constitutive equation (2), and to show that the
shear-curvature viscosity κ is proportional to the shear vis-
cosity η. Brownian dynamics (BD) simulations are performed
on a relatively simply system of spherical particles. To derive
an approximate theoretical expression for the shear-curvature
viscosity, we invoke an effective-medium argument in which
each particle in the system is considered as being immersed in a
continuum that represents the rest of the system. In preparation
to apply this effective-medium argument, we solve the corre-
sponding hydrodynamic problem in Sec. II of a single sphere
in a continuum fluid, where the velocity of the fluid prior to
insertion of the sphere is highly non-uniform. This analysis
confirms the proposed structure for the constitutive equation
in Eq. (2) and leads to an explicit expression for the shear-
curvature viscosity. The effective-medium approximation is
further specified in Sec. III. The structure of the constitutive
equation as well as the proportionality of the shear-curvature
viscosity to the shear viscosity is verified by BD simula-
tions of a relatively simple system of Brownian particles in
Sec. IV.

II. NON-LOCAL STRESSES FOR DILUTE
SUSPENSIONS: THE EINSTEIN ANALOG
FOR THE SHEAR-CURVATURE VISCOSITY

Consider a sphere that is inserted in a fluid (hereafter
referred to as the “solvent”) that undergoes, prior to inser-
tion of the sphere, significant spatial variations over a length
scale comparable to the size of the sphere. On insertion of
the sphere, stresses will be generated that not only depend on
the local shear rate of the fluid at the position of the sphere
before insertion but also on the local spatial variations of the
local shear rate. The latter contributions to the stress are the
non-local stresses.

In order to evaluate the stress tensor for a system that con-
sists of a strongly inhomogeneously flowing solvent in which
an assembly of spheres is embedded, we depart from an expres-
sion for the divergence of the stress tensor that is valid for
inhomogeneous systems, as derived in Ref. 55 by two of the
present authors,

∇ · Σ(r) = ∇ ·
[

2η0E − ÎPss

]

−

N∑
p=1

〈
∮∂Vp

dS ′ δ(r − r′) fh
p(r′)

〉
, (6)

where the shear stress 2η0E (with η0 as the shear viscosity
of the solvent) and the pressure Pss are due to solvent-solvent
molecule interactions (hence the subscript “ss”). The last term
is the contribution of the colloidal particles to the stress, where
N is the number of colloids under consideration, the integral
ranges over the surface ∂Vp of the colloids, fh

p(r′) is the local
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force per unit area that the solvent exerts onto the surface ele-
ments of colloid p, and δ(·) is the Dirac delta function. The
brackets 〈· · · 〉 denote averaging with respect to the position
coordinates (and the orientations in the case of non-spherical
particles) of the N colloids. This expression generalizes Batch-
elor’s expression56,57 for the stress of homogeneously sheared
systems to non-uniformly flowing systems. Batchelor’s classic
expression for the stress is obtained from Eq. (6) in the case
of a constant shear rate and concentration. The interpretation
of Eq. (6) for the stress tensor is rather straightforward: the
integrals represent (minus) the force with which the surfaces
of the colloids act onto the solvent, and the Dirac delta func-
tion counts only those colloids whose surfaces are located at
position r where the divergence of the stress is evaluated. This
is what is expected for the force per unit volume (which is by
definition the divergence of the stress tensor) produced by the
colloids. In this section, we consider an assembly of spheres
embedded in a strongly inhomogeneously flowing solvent,
where the spheres do not mutually interact. For such very dilute
suspensions, each sphere can be considered as being embedded
in an otherwise unbounded solvent since the presence of the
remaining spheres does not affect the flow for the sphere under
consideration.

Note that when the solvent velocity varies over distances
comparable to the size of the colloids, their Brownian motion
results in quite large temporal fluctuations of the local stress.
The brackets 〈· · · 〉 in Eq. (6) represent the thermal average
over these fluctuations and are thus only applicable for macro-
scopic time-dependent flows which vary sufficiently slow, as
compared to the time required for the colloids to diffuse over
distances comparable to their size.

In order to obtain an expression for the shear-curvature
viscosity, the stress tensor needs to be expanded up to third-
order in the spatial gradient of the suspension flow velocity.
Such a gradient expansion of the stress tensor with respect
to spatial gradients is obtained by expanding the Dirac delta
function in Eq. (6) according to

δ(r − r′) = δ(r − rp) +
∞∑

n=1

(−1)n

n!
(r′ − rp) n � ∇nδ(r − rp),

(7)

where the “�” denotes the contraction with respect to the
polyadic products (r′ − rp) n = (r′ − rp)(r′ − rp) · · · (r′ − rp)
and∇n =∇∇· · · ∇. Substitution into Eq. (6) leads to the follow-
ing spatial-gradient expansion of the divergence of the stress
tensor:

∇ · Σ(r) = ∇ ·
[

2η0E − ÎPss

]
+
∞∑

n=0

∇ · Σ(n), (8)

where E = (1/2)[∇v + (∇v)T ] is the velocity gradient tensor of
the suspension and where (with n ≥ 0)

∇ · Σ(n)(r) =
1
n!
∇n �

N∑
p=1

〈
δ(r − rp) T(n)

p

〉
, (9)

where the force moments T(n)
p are defined as

T(n)
p ≡ (−1)n+1

∮∂Vp

dS ′ (r′ − rp) n fh
p(r′). (10)

The calculation of the surface force density on the sphere
and the resulting force moments for the inhomogeneous flow
under consideration is a technical mathematical problem (the
mathematical details are given in Appendix A). The result-
ing expressions for the force moments, up to contributions of
fourth-order in spatial gradients of the flow velocity, are for-
mulated in terms of the flow velocity u of the solvent prior to
insertion of the sphere and the corresponding velocity gradient
tensor E(0) = (1/2)

[
∇u + (∇u)T

]
. As shown in Appendix A,

it is found that (indices refer to the components of vectors and
tensors)

T (0)
i = FBr

i ,

T (1)
ij = 8 π η0 a3

(
5
6

+
a2

20
∇2

)
E(0)

ij ,

T (2)
ijm = 6 π η0 a

a4

18

[
∇2

(
δij um + δim uj + δjm ui

)
− 5∇i∇jum − 2∇mE(0)

ij

]
+

a2

3
δij F(Br)

m ,

T (3)
ijmn = 8π η0 a3 a2

6

(
δij E(0)

mn +δim E(0)
jn +δjm E(0)

in

)
,

(11)

where FBr = −kBT∇ ln ρ is the Brownian force (with kB as
Boltzmann’s constant, T as the temperature, and ρ as the col-
loid number density). The Brownian force and velocities are
understood to be evaluated at the position rp of the inserted
colloidal particle.

Substitution of Eq. (11) into Eq. (9) leads to

∇ · Σ(0)(r) = −∇ ·
[
ρ kBT Î

]
,

∇ · Σ(1)(r) = 5 η0 ∇ ·

(
1 +

3
50

a2 ∇2
) [

ϕ(r) E(0)(r)
]
,

∇ · Σ(2)(r) = − η0 a2 ∇ · ∇2
[
ϕ(r) E(0)(r)

]
,

∇ · Σ(3)(r) =
1
2
η0 a2 ∇ · ∇2

[
ϕ(r) E(0)(r)

]
,

(12)

where the volume fraction of colloids is introduced,

ϕ(r) =
4π
3

a3 ρ(r). (13)

The leading gradient contributions to the divergence of the
stress tensor are proportional to first-order gradients in the
concentration and to fourth-order in the flow velocity, in accor-
dance with Eq. (2). We will therefore keep only such leading-
order gradient contributions to the non-local stress so that
mixed terms like ∇ϕ · ∇E(0) are neglected. Adding all terms
in Eq. (12) for the various contributions to the body force
originating from the colloids thus leads to

Σ(r) = 2 η0 E −
[
ρ kBT + Pss

]
Î

+ 5 η0 ϕ(r)

(
1 −

a2

25
∇2

)
E(0)(r). (14)

As a last step, the velocity-gradient tensor E(0) corre-
sponding to the solvent velocity prior to insertion of the
sphere must be expressed in terms of the suspension’s velocity-
gradient tensor E. The macroscopic flow velocity v of the
suspension is the volume average of the solvent velocity us
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after immersion of the sphere and the local velocity Vp of the
colloids,

v(r) =
[

1 − ϕ(r)
]
〈us〉(r) + ϕ(r) 〈Vp〉(r), (15)

where, as before, ϕ is the volume fraction and where the brack-
ets 〈· · · 〉 denote averaging with respect to the positions of the
non-interacting colloids. Since for dilute dispersions of non-
interacting particles the stress is linear in the concentration, the
explicit volume fraction dependence on the right-hand-side in
Eq. (15) can be neglected: retaining the explicit volume frac-
tion dependence leads to terms ∼ϕ2 in the expression (14) for
the stress tensor, which are terms that are beyond the valid-
ity of that expression. Hence, as far as the evaluation of the
relation between E(0) and E is concerned, Eq. (15) reduces
to v(r) = 〈us〉 (r). Furthermore, there is a difference between
us(r) and u(r) only when there is a colloid in the vicinity of
r, implying that the difference between 〈us〉 (r) and u(r) is of
the order of the volume fraction (remember that us and u are
the velocities after and prior to insertion of a sphere, respec-
tively). Hence, for the evaluation of the difference between
E(0) and E, we have v(r) = u(r), which implies that we can
replace E(0) in Eq. (14) by the velocity-gradient tensor E of the
suspension.

It is thus finally found that the stress tensor takes the form
(2) that was phenomenologically suggested in Ref. 52,

Σ = − Î P + 2
{
η − κ ∇2

}
E, (16)

FIG. 1. Insertion of a sphere into a flowing solvent (the gray sphere before
insertion and the blue sphere after immersion). This sketch pictures the sol-
vent’s flow velocity in the x-direction (the blue solid lines) that varies in the
y-direction for (a) a solvent flow velocity with a constant shear rate and (b)
for a spatially varying shear rate. The red lines schematically depict equidis-
tant stress areas corresponding to the flow fields generated after insertion of
the sphere. The corresponding expressions for the suspension stress tensor
are indicated in the figures. The additional curved flow in (b) gives rise to an
additional stress equal to −2κ∇2E.

where the pressure P is equal to

P = ρ kBT + Pss, (17)

the viscosity η is given by

η = η0

{
1 +

5
2
ϕ

}
, (18)

and the shear-curvature viscosity is equal to

κ(ϕ) = η0
a2

10
ϕ. (19)

Equation (17) reproduces the ideal gas law for the osmotic
pressure of dilute suspensions, Eq. (18) reproduces Einstein’s
expression for the shear viscosity, and Eq. (19) is the cor-
responding analogous low-concentration expression for the
shear-curvature viscosity.

Hence, on insertion of a sphere in a solvent with a constant
shear rate [see Fig. 1(a)], the additional stress caused by the
presence of the sphere is equal to 2η0(5/2)ϕE [see Eqs. (16)
and (18)]. On insertion of a sphere in a solvent with a curved
flow profile [see Fig. 1(b)], the curvature of the flow leads to
yet another stress contribution equal to−2η0(a2/10)ϕ∇2E [see
Eqs. (16) and (19)], which is the non-local contribution to the
stress.

III. AN EFFECTIVE-MEDIUM APPROXIMATION FOR
THE SHEAR-CURVATURE VISCOSITY

Within an effective-medium approach, the inhomoge-
neously flowing solvent in the considerations in Sec. II is
replaced by the suspension of colloidal spheres which are
identical to the sphere that is inserted. The suspension is
thus considered as an effective medium that behaves like a
solvent for the inserted sphere. The viscosity η0 of the sol-
vent in Eq. (19) is thus simply replaced by the shear viscos-
ity η of the suspension at the given volume fraction ϕ and
shear rate γ̇. According to Eq. (19), κ/N ∼ η0 (with N being
the number of colloidal spheres), that is, the contribution to
the shear-curvature viscosity per colloidal sphere is linearly
related to the shear viscosity. Since in concentrated suspen-
sions each sphere on average contributes equally to the stress
[corresponding to the particle-surface integrals in Eq. (6)], the
effective-medium approach thus states that the additive contri-
bution of each sphere to the shear-curvature viscosity is pro-
portional to the suspension viscosity. This leads to the follow-
ing effective-medium approximation for the shear-curvature
viscosity:

κ(ϕ, γ̇) = η(ϕ, γ̇)
a2

10
ϕ =

4π
30

η(ϕ, γ̇) a5 ρ, (20)

where the volume fraction [see Eq. (13)], the number concen-
tration ρ, and the shear rate are understood to be evaluated
at position r. This expression for the shear-curvature viscos-
ity quantifies the non-local stress due to spatial variations of
the shear rate and the concentration and will be compared
to simulations in Sec. IV. Note that the above effective-
medium approximation predicts a shear-rate dependence of
the shear-curvature viscosity that is similar to that of the shear
viscosity.
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It is important to realize that the radius a in the effective-
medium approach differs from the hard-core radius of the
sphere. A sphere that is inserted in a suspension does not
behave like a sphere with stick boundary conditions pre-
cisely at the geometrical boundary of that sphere. The vol-
ume fraction in the first equation in (20) is therefore not the
volume fraction that corresponds to the hard-core radius of
the sphere. In a comparison with simulations in Sec. IV, it
is therefore necessary to make the distinction between a in
Eq. (20) and the hard-core radius of the spheres. We shall
hereafter refer to a as the hydrodynamic-insertion radius,
which is the effective radius of a sphere that leads to an
increase in the stress on insertion into the suspension when
the suspension for that sphere behaves like a solvent with
stick boundary conditions. The hydrodynamic-insertion radius
will be larger, but of the same order of magnitude, as the
hard-core radius, which will be discussed in more detail
later.

The effective-medium result (20) for the shear-curvature
viscosity will be validated against Brownian dynamics simu-
lations in Sec. IV.

IV. BROWNIAN DYNAMICS SIMULATIONS

The effective-medium approach discussed above is an
approximation, the accuracy of which will be tested against
Brownian dynamics (BD-)simulations. In principle, one may
perform simulations where the interactions between the col-
loids and their coupling to the stress lead to gradient-
banding.58–60 Since non-local stresses are only significant
within the sharp interface that separates the two shear-bands
and only a small fraction of the colloids reside within the
interface, such simulations would suffer from bad statistics.
We therefore chose to simulate a flow between parallel plates,
which may be considered as a two-dimensional analog of the
type of flow encountered in micro-fluidics devices. Essentially
all the colloidal spheres now experience a highly non-linear
flow. In order to probe the non-local stress with sufficient statis-
tics for a quantitative comparison to the effective-medium pre-
diction, a large number of particles must be simulated. Includ-
ing full hydrodynamic interactions between the colloidal par-
ticles would therefore require unrealistically long computation
times. The simulated fluid of Brownian spheres plays the role
of the effective medium into which the sphere is immersed.
On a continuum level, this Brownian fluid acts as a hydrody-
namic medium. As a proof-of-principle, we therefore chose to
simulate Brownian spheres that are subject to a spatially sinu-
soidally varying driving body force in the direction parallel to
the confining plates in the absence of a solvent. The imposed
body force is nothing but a means to induce a non-linear
flow profile, which does not affect the measured shear-stress
directly, but only indirectly through inter-particle interac-
tions. The fundamental propagator for the BD-simulations thus
reads

dri = βD0

(
Fimp

i + Fp
i

)
dt +

√
2 D0 dt Θi, (21)

where β = 1/kBT (with kB as Boltzmann’s constant and T as
the temperature), D0 is the diffusion coefficient that sets the

time scale of Brownian motion, and Θi is a Gaussian variable
with average zero and variance unity. Furthermore, Fimp

i is the
above mentioned imposed force on particle number i in the
x-direction with its gradient in the y-direction. The imposed
force gives rise to an imposed velocity vimp

i of particle i equal
to

vimp
i = βD0 Fimp

i =

[
¯̇γ yi +

Ġ0

k
sin{k yi}

]
êx , (22)

with xi and yi as the x- and y-component of the position coordi-
nate ri of particle i and êx as the unit vector in the x-direction.
The first term corresponds to a simple shear velocity with shear
rate ¯̇γ, and the second term is a superimposed sinusoidally
varying velocity with wave number k and amplitude Ġ0/k. Fp

i
is the force on particle i due to direct interactions with other
particles,

Fp
i = −

∑
i>j

∇iV (| ri − rj |), (23)

with V (r) being the inter-colloidal pair-interaction potential.
For the pair-interaction potential, we choose a hard-core poten-
tial corresponding to a sphere with radius R, augmented with
a standard DLVO potential (details are given in Appendix B).
The simple linear shear flow is maintained by Lees-Edwards
boundary conditions, while the wave number k = 2πn/L
with n = 1, 2, . . . and L is the height of the simulation
box.

To calculate ensemble averaged quantities at a given posi-
tion r, the simulation domain is divided into 200 slabs that
are stacked along the gradient y-direction, spanning the flow-
vorticity plane. The ensemble averaged macroscopic velocity
profiles are thus obtained from

v(y) =
1

N(y)

∑
yj ∈slab(y)

vp(yj), (24)

where the summation ranges over particles which reside within
the slab with its position at yj and with a velocity vp(yj) and
where N(y) is the number of spheres within the same slab. The
local macroscopic stress σ(y) is determined in the same way,
where stresses arising from interactions with particles out-
side the slab are accounted for the averaging procedure, where
inter-particle forces of particles whose line segment intersects
with the slab under consideration are included in the stress
computation, and account for contributions to the stress origi-
nating from spatial inhomogeneities.61–63 The BD-simulations
are also used to obtain the shear-rate dependence of the viscos-
ity, for which Ġ0 = 0. All simulations start from equilibrated
states, which are achieved from simulations without flow over
an extended period of time (more than 20 times R2/D0). The
stationary state under flow conditions is subsequently reached
after an additional simulation under flow conditions over a time
period of at least 100×R2/D0 for homogeneous shear flow and
1000 × R2/D0 for inhomogeneous shear flow. Flow- and stress
profiles are obtained once the stationary state is attained in
the way described above. The time interval dt∗ = (R2/D0)dt is
chosen as 5 × 10−5, which is verified to be sufficiently small.
The number of BD-simulation time steps for an inhomoge-
neous flow is at least equal to 2 × 107. The system consists
of 16 000 spheres, dispersed within a rectangular box. The
length of the box along the shear gradient direction is twice



014903-6 Jin et al. J. Chem. Phys. 149, 014903 (2018)

larger than that in the other two directions, in order to achieve a
sufficiently finely divided set of values of the wave numbers k
= 2nπ/L. The volume fraction corresponding to the hard-core
radius R of the spheres is 0.30 so that the size of the cube
along the gradient direction is about 100 times the particle
radius. The simulation box size (100 R) is much larger than
the distance over which particles are correlated (about 4–5 R).
Furthermore, box sizes similar to ours have been shown to be
sufficiently large to simulate shear-banded systems.58–60 True
bulk properties are therefore probed, assuring that the shear-
curvature viscosity as obtained from our simulations is a true
material function. Additional evidence will be presented in
Sec. VI.

V. RESULTS AND DISCUSSION

In this section, we present the results of BD-simulations
and compare them with the effective-medium approximation
presented in Sec. III. All results will be presented in the
dimensionless form. Lengths are non-dimensionalized with
respect to the sphere radius R, times are non-dimensionalized
with respect to R2/D0, velocities are non-dimensionalized with
respect to D0/R, and forces are non-dimensionalized with
respect to kBT /R: r∗i = ri/R, k∗ = kR, Fp ∗

i = Fp
i R/kBT , v∗

= vR/D0, and t∗ = t D0/R2.
The expression for the shear-stress σ, that is, the

xy-component of the stress tensor in Eq. (2), is non-
dimensionalized by the same characteristic variables men-
tioned above so that σ∗ =

{
η − κ ∇2

}
γ̇ ×

[
6 π R3/kBT

]
, and

hence,

σ∗ = η∗
{

1 −
κ∗

η∗
ϕ∗ ∇∗ 2

}
γ̇∗, (25)

where the dimensionless gradient operator ∇∗ is equal to R∇
and the “relative viscosity” is equal to

η∗ = η
6πRD0

kBT
. (26)

Note that for a Brownian particle in a solvent, η∗ = η/η0, with
η0 being the shear viscosity of the solvent. Furthermore, the
local Peclet number is given by

γ̇∗ =
γ̇ R2

D0
, (27)

while the dimensionless shear-curvature viscosity (per unit
volume fraction) is defined as

κ∗ =
κ η∗

R2 ϕ∗ η
= κ

6πD0

kBT R ϕ∗
, (28)

where

ϕ∗ =
4π
3

R3 ρ (29)

is the hard-core volume fraction. Note that this volume fraction
differs from the volume fraction ϕ in Secs. II–IV, which is
based on the hydrodynamic-insertion radius [see Eq. (13) and
the discussion at the end of Sec. III].

As a first step, the viscosity of a homogeneously sheared
system (for which Ġ0 = 0) is simulated as a function of the
shear rate, for a given volume fraction of ϕ∗ = 0.3. The rela-
tive viscosity as a function of the Peclet number ¯̇γ∗ is given in
Fig. 2. The black solid line is a fit of the blue simulation data

FIG. 2. The relative viscosity of a homogeneously sheared system with a
volume fraction of ϕ∗ = 0.30 as a function of the Peclet number ¯̇γ∗. Blue data
points are simulation results, and the black solid line is a fit to the empirical
Carreau-Yasuda function (30). The values of the fitting parameters are ηq
= 5.6, η∞ = 0, λ = 4.87, and m = 0.24.

points to the empirical Carreau-Yasuda viscosity equation,
which has been shown before to accurately describe viscosity
data,64,65

η∗(γ̇) = η∞ +
ηq − η∞[

1 + (λγ̇)2
]m , (30)

where ηq is the zero-shear viscosity, η∞ is the high-shear vis-
cosity, λ is a relaxation time, and m is a power-law index.
A similar shear-thinning behavior and numerical values for
the relative viscosity have been obtained, for example, in
Refs. 66 and 67 for hard-sphere suspensions without hydrody-
namic interactions with Brownian dynamics simulations and
in Ref. 68 for Lennard-Jones fluids with Molecular dynamics
simulations. The Carreau-Yasuda fit will be used later in order
to analyze the numerical results for inhomogeneously sheared
systems.

Since the imposed velocity in Eq. (22) for the inhomo-
geneously sheared systems is sinusoidal, the corresponding
resulting particle velocities will be similarly sinusoidal, with
an amplitude of approximately Ġ0/k. The local shear rate is
therefore equal to ¯̇γ + Ġ0 cos{k y}. In the simulation, Ġ0 is
a constant, in order to fix the values of local shear rates for
each different wave number. The amplitude of the sinusoidal
flow-velocity perturbation is chosen to be small as compared
to the linear flow velocity corresponding to the shear rate ¯̇γ.
The reason for this is to clearly separate the local and non-local
stresses. In case the amplitude of the sinusoidal flow velocity
would be relatively large, there would be a significant sinu-
soidal variation of the stress due to the spatial variation of
the shear viscosity itself on top of the non-local stress. The
lower limit of the amplitude Ġ0 to obtain accurate results
is about D0/(10 R2). The local shear-rate amplitude is not
exactly equal to Ġ0 since direct inter-colloidal interactions
change the flow profile. The local velocity is therefore written
as

v(y) = ¯̇γ y +
Ġ
k

sin{k y}, (31)

where the amplitude Ġ/k is determined from a fit of the sim-
ulated flow profile. The local shear rate is obtained by the
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differentiation of Eq. (31),

γ̇(y) = ¯̇γ + Ġ cos{ky}, (32)

or in dimensionless variables

γ̇∗(y∗) = ¯̇γ∗ + Ġ∗ cos{k∗y∗}, (33)

where dimensionless quantities are introduced as before. An
example of a velocity and shear-rate profile is shown in Fig. 3
for a Peclet number ¯̇γ∗ = 0.5 and a wave number of k = 4π/L.
The velocity profile is plotted in Fig. 3(a), from which the
amplitude V = Ġ∗/k is determined by a fit to Eq. (31), which
is indicated by the red solid curve. The corresponding shear-
rate profile as obtained from numerical differentiation of the
simulation data is plotted in Fig. 3(b).

Substitution of Eq. (33) for the inhomogeneous shear rate
into Eq. (25) for the stress leads to

σ∗(y∗) = η∗(γ̇∗(y∗)) ×

[
¯̇γ∗ + Ġ∗

{
1 +

κ∗

η∗
ϕ∗ k∗ 2

}
cos{k∗ y∗}

]
,

(34)

where the relative shear viscosity is evaluated at the local shear
rate given in Eq. (33). Examples of inhomogeneous shear-
stress profiles are given in Fig. 4(a) for an average shear rate
of ¯̇γ∗ = 0.5 and for n = 1, 2, 3, 4 (the black, green, blue, and
red data points and fits, respectively).

The solid lines in Fig. 4(a) are the result of a global least-
square fitting of all the stress profiles simultaneously. One fit

FIG. 3. (a) The velocity profile obtained from a simulation with ¯̇γ∗ = 0.5 and
with a wave number equal to k = 2nπ/L with n = 2. The black solid line corre-
sponds to a linear flow with a constant shear rate ¯̇γ∗ = 0.5, and the red line is a
sinusoidal fit to the actual velocity profile. The inset shows the corresponding
plot for ∆v∗ = v∗ − ¯̇γ∗ y∗, where the open data points are simulation data.
(b) The shear rate profile obtained from numerical differentiation of the data
points shown in the inset in (a). The red solid line is obtained from the fitted
curve in (a), which corresponds to Eq. (33).

FIG. 4. (a) The local shear stress σ∗ under inhomogeneous shear flow for an
average shear rate ¯̇γ∗ = 0.5 and for four different wave numbers k = 2nπ/L
with n = 1, 2, 3, 4, corresponding to the black, green, blue, and red simulation
data points, respectively. The solid lines are global fits for all wave vectors
simultaneously to Eqs. (38) and (39). (b) Numerical values of the amplitude
A(k∗) in Eq. (38) as obtained from fits to each wave vector separately, which
shows that the theoretically predicted linear dependence on k∗2 in Eq. (39)
is reproduced by the simulations. The blue circle is for ¯̇γ = 0.2, the green
triangle for 0.5, and the red cross is for 1.0. The data points for different
Peclet numbers ¯̇γ essentially fall on top of each other, indicating that Λ0 is
independent of ¯̇γ. (c) The simulated stress profile as in (a) for n = 4, where
now the solid line is the best global fit result with the neglect of non-local
stress contributions. The inset shows the difference between the fitting result
for the stress profile with [see Fig. 4(a)] and without contributions from the
non-local stress.

parameter is the dimensionless parameter,

Λ0 ≡
κ∗

ϕ∗ η∗
=

κ

R2 ϕ∗ η
. (35)

According to the effective-medium approximation (20), this
dimensionless parameter should be equal to

Λ0 =
1

10

( a
R

)5
. (36)

As before, a is the hydrodynamic insertion radius (see the
discussion at the end of Sec. III), while R is the hard-core
radius of the spheres. The effective-medium approximation
thus predicts that Λ0 is independent of the applied mean shear
rate ¯̇γ. Two more fitting parameters are introduced, which
are necessary to correct for the errors involved in the inde-
pendently obtained simulated viscosity data, for which the
Carreau-Yasuda fit in Eq. (30) is used. We thus minimize the
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square

ε(Λ0, C1, C2 | ¯̇γ
∗) =

∑
k∗

∑
m

[
σ∗,model(y∗m |Λ0, C1, C2 | ¯̇γ∗, k∗)

−σ∗,sim(y∗m | ¯̇γ
∗, k∗)

]2
, (37)

where the first sum ranges over all the different wave numbers
[corresponding to all the stress profiles shown in Fig. 4(a)]
and the second sum ranges over all positions where the stress
is evaluated. Here, σ∗,sim(y∗m | ¯̇γ∗, k∗) is the simulated stress,
and

σ∗,model(y∗m | Λ0, C1, C2 | ¯̇γ∗, k∗)

= η∗(γ̇∗(y∗m))
[
C1 ¯̇γ∗+C2 Ġ∗

{
1+ϕ∗ A(k∗)

}
cos{k∗y∗m}

]
,

(38)

with
A(k∗) = Λ0 k∗ 2, (39)

corresponds to the stress in Eq. (34), except for the two addi-
tional fitting parameters C1,2 which account for the inaccuracy
of the viscosity BD-simulation results. The fitting values of
these two parameters should be close to unity.

A fit for each separate wave vector (using the values
for C1,2, as found in the global fits) gives numerical values
for A(k∗) in Eq. (38), where the linear dependence on k∗2 in
Eq. (39) is the prediction from the theory. Figure 4(b) shows
that such a linear dependence is indeed reproduced by the sim-
ulations. Figure 4(c) shows the global fitting result for one of
the stress profiles that is also given in Fig. 4(a) (with n = 4). The

FIG. 5. (a) Results of the least-square fits for Λ0, C1, and C2 (the red stars,
green circles, and blue triangles, respectively) for three values of the Peclet
number ¯̇γ∗ = 0.2, 0.5, and 1.0. The horizontal red line is the weighted average
of the three data points for Λ0. (b) The relative viscosity (in blue) as com-
pared to the relative viscosity η∗κ as obtained from the numerical values for
Λ0 = 3.8 and a/R = 2.07 ± 0.06 (in red) according to the effective-medium
approximation in Eq. (20).

inset shows the difference between the fitting results including
the non-local stress and that without the contribution from the
non-local stress. The comparison between these fits shows that
non-local stresses are essential to describe the simulated stress
profiles.

Results for the fitting parameters for three different values
of the Peclet number ¯̇γ∗ are given in Fig. 5(a). As can be seen
from this figure, the values of C1,2 are quite close to unity, as
they should, while the value of Λ0 = 3.8 ± 0.5 is constant
and independent of ¯̇γ∗ to within simulation errors, as pre-
dicted by the effective-medium approximation [see Eq. (36)].
According to Eq. (36), the numerical value of Λ0 found in
Fig. 5(a) corresponds to (a/R)5 = 38 ± 5, and hence a/R = 2.07
± 0.06. That is, the hydrodynamic-insertion radius of a sphere
in the simulated system in the absence of hydrodynamic inter-
actions is about two times larger than its hard-core radius.
This is of the same order as the distance from a sphere over
which the hydrodynamic behavior of a suspension sets in as
found in simulations of Brownian hard-spheres without hydro-
dynamic interactions in 2D.69 The relative viscosity η∗κ that
follows from the effective-medium prediction in Eq. (20) with
the numerical value of Λ0 = 3.8 and a/R = 2.07 is plotted in
Fig. 5(b). This plot confirms the proportionality κ ∼ η, as pre-
dicted by the effective-medium expression for κ in Eq. (20),
within a shear-rate range where the viscosity significantly
shear-thins.

VI. SUMMARY AND CONCLUSIONS

For dilute suspensions, we derived a constitutive equation
that includes non-local stresses, which reproduces the earlier
phenomenologically proposed expression for the stress ten-
sor48,52,53 [see Eqs. (2), (16)–(19)]. This derivation is based
on the evaluation of the additional stress that is generated
by insertion of a sphere into an inhomogeneously flowing
solvent, in combination with a general expression for the
stress tensor that includes non-local stresses55 [see Eq. (6)].
The analytical derivation leads to an explicit expression for
the so-called shear-curvature viscosity that measures the non-
local stress52 [see Eq. (19)]. An effective-medium approach is
proposed [see Eq. (20)], where the suspension itself is con-
sidered as “the solvent” into which a sphere is immersed.
The effective-medium approach necessitates the introduction
of the “hydrodynamic-insertion radius”, which is the effec-
tive radius of a sphere that leads to an increase in the stress
on insertion into the suspension when the suspension behaves
like a solvent with stick boundary conditions. This radius is
larger, but of the same order, as the hard-core radius of the
sphere.

Brownian dynamics (BD-)simulations are performed on
a highly non-uniformly flowing system of Brownian spheres
with the neglect of hydrodynamic interactions. The simula-
tions confirm the effective-medium prediction that the shear-
curvature viscosity is proportional to the shear viscosity:
the shear-rate dependence of the shear-curvature viscosity
scales quite accurately with that of the shear viscosity. The
hydrodynamic-insertion radius is found to be twice as large
as the hard-core radius of the spheres. This is a quite reason-
able result since the distance from a given sphere where a
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concentrated suspension (again with the neglect of hydrody-
namic interactions) behaves as a macroscopic fluid is also of
that order.69 Note, however, that the hydrodynamic-insertion
radius a is concentration dependent: it varies from about a
≈ 2R, as found in the present simulations at a high con-
centration, to a = R in dilute dispersions (with R as the
hard-core radius). The effective-medium approach is not able
to accurately predict the concentration dependence of the
shear-curvature viscosity. Further analytical theory and/or
simulations will be necessary to elucidate the concentration
dependence of the hydrodynamic-insertion radius.

In simulations of the shear viscosity, through imposed
wavelength dependent body forces, the box is considered to be
sufficiently large when the inferred viscosity does not depend
on the wavelength. Similarly, we find that the wave-vector
dependence of the simulated stress agrees with the theoret-
ical continuum prediction [see Eq. (34)], in which λ0 does
not depend on the wavelength [see Fig. 4(b)]. This confirms
that the obtained shear-curvature viscosity is a true material
property.

This work is limited to suspensions of spherical particles.
It would be interesting to extend the approach described in this
work to systems consisting of more complex macromolecules,
like colloidal rods, polymers, and worm-like micelles. The
development of an analytical theory, like for spheres in this
work, may not be feasible. One approach could be to verify
the relation between the shear-curvature viscosity and the shear
viscosity as given in Eq. (20) by means of similar simulations
as for spheres in this work and identify the length scale con-
nected to the hydrodynamic-insertion radius for these more
complex systems. The effective-medium relation between the
shear-curvature viscosity and the shear viscosity in Eq. (20)
may be more generally valid, where the challenge lies in
the interpretation of the length scale corresponding to the
hydrodynamic-insertion radius.

Similar to the experiments on worm-like micellar sys-
tems in Ref. 1, the experimental validation of the effective-
medium results in Eq. (20) for the shear-curvature viscosity
could be established by probing velocity profiles in narrow
micro-fluidics channels. Such experiments on suspensions of
(spherical) colloids have not yet been performed. The effective
medium approach for the non-local stress is also relevant for
time-dependent flows, for example, oscillatory flows in narrow
channels. For large-amplitude oscillatory flows, the non-linear
response functions consist of additive local and non-local vis-
cous contributions which are similarly proportional to each
other as for the linear response functions.
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APPENDIX A: EVALUATION OF FORCE MOMENTS

In this Appendix, the mathematical details are given for
the calculation of the force moments in Eq. (10) for a single
sphere immersed in an inhomogeneously flowing solvent.

Let u(r) denote the flow field that exists prior to inser-
tion of a sphere. This incident flow field is gradient expanded
up to third-order in spatial gradients around the instantaneous
position rp of the sphere (which is taken to be at the origin),

u(r) = u(0)(r) + u(1)(r) + u(2)(r) + u(3)(r) + u(4)(r) + · · · , (A1)

where
u(0)(r) = u(rp),

u(1)(r) = r · [∇u]r=rp ,

u(2)(r) =
1
2

rr : [∇∇u]r=rp ,

u(3)(r) =
1
6

rrr
...[∇∇∇u]r=rp ,

u(4)(r) =
1

24
rrrr

...[∇∇∇∇u]r=rp .

(A2)

Hereafter, we will refer to u(n) as the nth-order flow field.
Note that the prescribed velocity u of the solvent requires an
external body force. The Stokes equations are still fulfilled,
but with this body added to the divergence of the stress. Due
to the linearity of the governing equations in the creeping flow
regime, the induced forces are simply the sum of the surface
forces induced by each of the separate flow fields in Eq. (A1).
These contributions will be denoted as f (n),

fh = f (0) + f (1) + f (2) + f (3) + f (4) + · · · . (A3)

The force densities f (n)(r̂) (with r̂ as the outward unit normal
vector on the spherical surface) are even functions of r̂ for even
n and odd functions for odd n.

A little thought shows that the divergence of the stress
tensor in Eq. (4) in the main text, up to fourth-order in spatial
gradients, depends on the various moments of the nth-order
force densities in Eq. (A3) as

T(0) = −∮∂V0

dS f (0)(r̂)−∮∂V0

dS f (2)(r̂)−∮∂V0

dS f (4)(r̂),

T(1) = ∮∂V0

dS r f (1)(r̂) + ∮∂V0

dS r f (3)(r̂),

T(2) = −∮∂V0

dS r r f (0)(r̂) − ∮∂V0

dS r r f (2)(r̂),

T(3) = ∮∂V0

dS r r r f (1)(r̂).

(A4)

The flow field v(r) that exists after insertion of the sphere
is written as

v(r) = u(r) + ur(r), (A5)

where ur(r) is the “reflected flow field,” that is, the field that is
due to the surface forces with which the sphere acts onto the
fluid after insertion.

The method of calculating reflected flow fields that we
will employ here has been published in a monograph by one
of the present authors (JKGD)70 and is therefore not easily
accessible. We will therefore first discuss this method.

The reflected flow field satisfies the incompressibility
condition as well as the creeping flow equation,

∇ · ur(r) = 0,

∇2 ∇2 ur(r) = 0.
(A6)



014903-10 Jin et al. J. Chem. Phys. 149, 014903 (2018)

Without loss of generality, it is assumed that the sphere resides
instantaneously with its midpoint at the origin. We seek a
solution of these equations under the boundary conditions

ur(r) = u0(r), for r ∈ ∂V0,

= 0, for r → ∞, (A7)

with u0 as a known flow field (which will be related to the
incident flow field u later) and where ∂V0 is a spherical surface
of radius a with its center at the origin (as indicated by the index
“0”). The solution of this set of equations can be constructed
as follows.70 First expand the known flow field u0(r) around
r = 0,

u0(r) =
∞∑

l=0

1
l!

rl �
[ (
∇′

) l u0(r′)
]

r′=0
, (A8)

where (∇′)l is the lth-order polyadic product of ∇′ and �
stands for the full contraction. The solution of the above set of
equations is obtained by replacing the polyadic products rl by
“hydrodynamic connectors” U(l+2)(r),

ur(r) =
∞∑

l=0

1
l!

U(l+2)(r) �
[ (
∇′

) l u0(r′)
]

r′=0
. (A9)

These hydrodynamic connectors U(l+2) are tensors of rank l
+ 2. It is easily seen that this representation of the reflected
flow field solves the above boundary-value problem, when

∇ · U(l+2)(r) = 0,

∇2 ∇2 U(l+2)(r) = 0, (A10)

U(l+2)(r) = Î rl, for r ∈ ∂V0,

= 0, for r → ∞.

The hydrodynamic connectors can be constructed from the
m-rank tensors,

H(m) ≡ ∇m 1
r

. (A11)

The first few connectors are equal to

U(2)(r) =
a
4

(
r2 − a2

)
H(2)(r) + a Î H (0)(r),

U(3)(r) = −
a3

6

(
r2 − a2

)
H(3)(r) − a3 Î H(1)(r),

U(4)(r) =
a5

24

(
r2 − a2

)
H(4)(r)

+
a3

12

(
r2 − a2

)
H(2)(r) Î

+
a5

3
Î H(2)(r) +

a3

3
Î H (0)(r) Î,

U(5)(r) = −
a7

150

(
r2 − a2

)
H(5)(r)

−
a5

10

(
r2 − a2

)
H(3)(r) Î

−
a7

15
Î H(3)(r) −

3 a5

5
Î H(1)(r) Î .

(A12)

The higher-order connectors vary like 1/r2 or decay faster for
large distances. In Ref. 70, higher-order connectors are given as
well, where contributions ∼ ∇2∇2u0 are omitted. Note, how-
ever, that such terms are in the present case non-zero, as an
external non-zero body force is generally exerted to sustain

the incident flow. Up to the fifth-order connector, however, for
which the fourth-order polyadic products of ∇′ in Eq. (A9)
do not appear, contributions ∼ ∇2∇2u0 are not present so that
the expressions (A12) can nevertheless be employed for our
purposes. The advantage of formulating the solution in terms
of hydrodynamic connectors is that a general solution can now
be constructed for arbitrary flow fields u0.

That the expressions in Eq. (A12) solve the posed bound-
ary value problem is easily verified using the identities,

∇2 H(n) = 0,

∇ ·H(n) = 0,

r ·H(n+1) = −(n + 1)H(n),

∇2
(
r2 H(n)

)
= −2(2n − 1) H(n),

∇ ·
(
r2 H(n)

)
= −2n H(n−1).

(A13)

These relations will turn out to be quite useful in the evaluation
of the pressure and induced force densities later on. The tensors
H(m) that we will need, in terms of their components, are equal
to

H (0) =
1
r

,

H (1)
α = −

1

r2
r̂α,

H (2)
αβ =

1

r3

[
− δαβ + 3 r̂α r̂β

]
,

(A14)

H (3)
αβγ =

1

r4

[
3
(
r̂γ δαβ+r̂α δβγ+r̂β δαγ

)
− 15 r̂α r̂β r̂γ

]
,

H (4)
αβγp =

1

r5

[
3
(
δγp δαβ + δαp δβγ + δβp δαγ

)
+ 105 r̂p r̂α r̂β r̂γ

− 15
(
r̂p r̂γ δαβ + r̂p r̂α δβγ + r̂p r̂β δαγ

+ r̂α r̂β δγp + r̂α r̂γ δβp + r̂β r̂γ δαp

) ]
,

H (5)
αβγpq =

1

r6

[
−15

(
δαβ

{
r̂qδγp + r̂γδpq + r̂pδγq

}

+ δαγ
{
r̂qδβp + r̂βδpq + r̂pδβq

}

+ δαp

{
r̂qδβγ + r̂γδβq + r̂βδγq

}

+ δβγ
{
r̂αδpq + r̂pδαq

}
+ δγp

{
r̂βδαq + r̂αδβq

}

+ δβp

{
r̂γδαq + r̂αδγq

})
+ 105

(
r̂β r̂γ r̂pδαq + r̂α r̂γ r̂pδβq + r̂α r̂β r̂pδγq

+ r̂α r̂β r̂γδpq + r̂γ r̂pr̂qδαβ + r̂α r̂pr̂qδβγ

+ r̂β r̂pr̂qδαγ + r̂α r̂β r̂qδγp + r̂α r̂γ r̂qδβp

+ r̂β r̂γ r̂qδαp

)
− 945 r̂α r̂β r̂γ r̂pr̂q

]
,

where r̂α are the components of the unit vector in the direction
of r.

Once the reflected flow field is obtained via the above
described method, the corresponding pressure is obtained from
the creeping-flow equation

η0 ∇
2ur = ∇pr . (A15)
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The force density that the fluid exerts onto the sphere is
subsequently obtained from

fi = η0

[
∇iur,j + ∇jur,i

] rj

a
− pr

ri

a
. (A16)

Each of the Subsections 1–6 in this Appendix is concerned
with the calculation of the induced force densities and force
moments corresponding to each of the nth-order flow fields.
Explicit expressions for the reflected flow fields and the pres-
sures will be derived. Although the induced forces for the
zeroth- and first-order fields are well known, we will for
completeness include their derivation in the following as
well.

1. The zeroth-order field

The expansion in Eq. (A8) contains now only the term
with l = 0. For a sphere that is fixed to the origin and does
not rotate, stick boundary conditions imply that ur = −u(0) for
r ∈ ∂V0 (where, as before, the position coordinate rp of the
sphere will be taken in the origin, without loss of generality).
This identifies the field u0(r) = −u(0) = −u(r = rp) in Eq. (A7)
for r ∈ ∂V0. We will generalize the analysis here to the situation
where the particle velocity V(p) is non-zero. This changes u0 to
−
[
u(r = rp) − V(p)

]
. The translational velocity of the sphere

in terms of u and its derivatives will be determined later. The
flow field is thus, according to Eq. (A9), equal to

ur(r) = −U(2)(r) · V, (A17)

where we abbreviated

V = u(r = rp) − V(p). (A18)

The explicit expression for the second-order connector in
Eqs. (A12) and (A14) immediately leads to the well-known
expression for the flow field generated by a translating sphere
in an otherwise quiescent fluid,

ur,i = −
1
4

{
3

a
r

+
a3

r3

}
Vi−

3
4

{
a
r
−

a3

r3

}
ri rα
r2

Vα . (A19)

The pressure pr is obtained from Eq. (A15). From the first
and fourth identities in Eq. (A13), it is readily found that

∇2ur,i = −
[
∇2U (2)

iα

]
Vα = −

a
4
∇2

(
r2 H (2)

iα

)
Vα

=
3 a
2

H (2)
iα Vα. (A20)

From the definition of the H-matrices and Eq. (A15), it
immediately follows that

pr = −
3 η0

2
a

r3
rα Vα. (A21)

From Eqs. (A16), (A19), and (A21), it is thus found that
the contribution f (0)

r to the force density resulting from the
reflected field is equal to

f (0)
r,i =

3 η0

2 a
Vi. (A22)

The additional contribution from the incident field u(r) = u(0)

is zero so that the two moments of the surface force density

that are needed in Eq. (A4) are found to be equal to

∮∂V0

dS f (0)
i = 6 π a η0

[
ui(r = rp) − V (p)

i

]
,

∮∂V0

dS r̂p r̂q f (0)
i = 2π η0 a δpq

[
ui(r = rp)−V (p)

i

]
.

(A23)

2. The first-order field

The expansion in Eq. (A8) contains now only the term
with l = 1. For notational convenience, we write

u(1)(r) = r · Γ̃, (A24)

where
Γ̃βα =

[
∇β uα

]
r=rp

. (A25)

Stick boundary conditions imply that ur = −u(1) for r ∈ ∂V0.
This identifies the field u0 = − r · Γ̃ in Eq. (A7). We generalize
the analysis to a particle that is rotating with an angular velocity
Ω(p), which will be determined later. Surface elements of the
sphere therefore have a velocity equal toΩ(p) × r for r ∈ ∂V0.
This changes the field u0 to

u0 = − r · Γ, for r ∈ ∂V0, (A26)

where we abbreviated

Γβα = Γ̃βα−εαγβΩ
(p)
γ =

[
∇βuα

]
r=rp
−εαγβ Ω

(p)
γ , (A27)

where εαβγ is the Levi-Cevita tensor. The flow field is thus,
according to Eq. (A9),

ur(r) = −U(3)(r) : Γ (A28)

or, in components,

ur,i = −U (3)
iαβ Γβα. (A29)

It is thus found from Eqs. (A12) and (A14),

ur,i =
1
2

a3

r3
rα( Γiα − Γαi ) −

1
2

a5

r5
rα( Γiα + Γαi )

−
5
2

{
a3

r3
−

a5

r5

}
ri rα rβ

r2
Γαβ , (A30)

which is the flow field generated by a sphere in homoge-
neous shear flow, with a fixed zero translational and rotational
velocity.

Using that

∇2ur,i = −
[
∇2 U (3)

iαβ

]
Γβα

=
a3

6
∇2

(
r2 H (3)

iαβ

)
Γβα = −

5 a3

3
H (3)

iαβ Γβα, (A31)

it is found that

pr = − η0
5 a3

3
H (2)
αβ Γβα

= − 5 η0
a3

r3

rα rβ
r2
Γαβ . (A32)

From Eq. (A30), it is readily found that for r = a,

∇jur,i = −Γij + 4 r̂j r̂α Γαi + r̂j r̂α Γiα − 5r̂i r̂j r̂α r̂β Γαβ . (A33)

From Eq. (A16), it thus follows that the force density
resulting from the reflected field is

f (1)
r,i = 3 η0 r̂α Γαi. (A34)
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The additional force density that originates from the inci-
dent field u(r) = u(1) in Eq. (A5) is found from (with p(1)

0 as
the pressure resulting from the incident field)

∇ju
(1)
i = Γ̃ji,

p(1)
0 = 0

(A35)

to be equal to

f (1)
0,i = η0

[
r̂α Γ̃αi + r̂α Γ̃iα

]
. (A36)

The required force moments are thus equal to

∮∂V0

dS r̂p f (1)
i = 4π a2 η0

[
4
3
∇p ui +

1
3
∇i up − ε iγpΩ

(p)
γ

]
,

(A37)

∮∂V0

dS r̂p r̂q r̂j f (1)
i

=
16π
15

a2 η0

[
δpq ∇jui + δpj ∇q ui + δqj ∇pui

]
r=rp

+
4π
15

a2 η0

[
δpq ∇iuj + δpj ∇i uq + δqj ∇iup

]
r=rp

−
4π
5

a2η0

[
δpq ε iγj Ω

(p)
γ +δpj ε iγq Ω

(p)
γ +δqjε iγpΩ

(p)
γ

]
.

3. The second-order field

Contrary to the zeroth- and first-order surface force den-
sities, the second-order force density is as yet not known
and requires the full exploitation of the method of reflections
in the form discussed before. For convenience of notation,
the second-order contribution v(2)

0 to the incident flow field
incident field is written as

u(2)(r) =
1
2

r r : F, (A38)

where
Fγβα ≡

[
∇γ ∇β uα(r)

]
r=0

. (A39)

Since the finite translation and rotational velocities of the
sphere are fully accounted for in the calculation of the zeroth
and first order contributions, in the calculation of the higher
order moments, the sphere may be considered to have zero
velocities. For stick boundary conditions, we therefore have
that ur(r) = −(1/2) rr : F, for r ∈ ∂V0, which identifies the
field u0 in Eq. (A7),

u0(r) = −
1
2

r r : F , r ∈ ∂V0. (A40)

The gradient expansion in Eq. (A8) contains only a single term
with l = 2 so that Eq. (A9) now reads

ur(r) = −
1
2

U(4)(r) � F, (A41)

where the contraction� is with respect to three indices. Explic-
itly denoting the contractions gives (where summations over
repeated indices is understood)

ur,i = −
1
2

U (4)
iαβγ Fγβα. (A42)

Although we do not need the explicit expression for the
reflected field, it is readily found from the above explicit

expression for U(4) that

ur,i =
a2

8

{
−

a
r

+
1
2

a3

r3
+

1
2

a5

r5

}
Fααi

−
3
16

a2

r2

{
a3

r3
+

5
3

a5

r5

}
rαrβFαβi

−
1
16

a2

r2

{
2

a
r
− 7

a3

r3
+ 5

a5

r5

}
rirβFααβ

+
5
8

a2

r2

{
a3

r3
−

a5

r5

}
rαrβFiαβ

−
35
16

a2

r4

{
a3

r3
−

a5

r5

}
rirαrβrγFαβγ. (A43)

The pressure pr is again obtained from Eq. (A15). From
the first and fourth expressions in Eq. (A13), it is readily found
that

∇2ur,i = −
1
2

[
∇2U (4)

iαβγ

]
Fγβα

= −
1
2

[
a5

24
∇2

(
r2H (4)

iαβγ

)
+

a3

12
∇2

(
r2H (2)

iα δβγ
)]

Fγβα

=
a3

24

[
7 a2 H (4)

iαβγ + 6 H (2)
iα δβγ

]
Fγβ α. (A44)

It immediately follows that

pr = η0
a3

24

[
7 a2 H (3)

αβγ + 6 H (1)
α δβγ

]
Fγβ α. (A45)

The explicit expression for the pressure is thus

pr =
η0

24

[{
21

a5

r5
− 6

a3

r3

}
rβ Fααβ − 105

a5

r7
rαrβrγ Fγβα

]
.

(A46)

The stress contribution ∼∇jur ,i from the reflected field
at the surface of the sphere, for which r = a, follows from
Eq. (A43),

∇jur,i = −
3
8

rj Fααi − rα Fαji

+
1
4

1

a2
rα rβ rj

[
25
2

Fαβi + 5 Fiαβ

]

+
3
8

1

a2
ri rj rβ

[
Fααβ −

35
3

1

a2
rα rγ Fαβγ

]
, (A47)

where, as before, r̂p is the pth component of the unit vector
r̂ = r/r.

From Eqs. (A16), (A46), and (A47), it is thus found that
the force density f (2)

r on the surface of the sphere originating
from the reflected field is equal to

f (2)
r,i = − a η0

[
3
8

Fααi +
1
4

r̂i r̂β Fααβ

−
1
4

r̂α r̂β Fiαβ −
17
8

r̂α r̂β Fαβi

]
. (A48)

The additional force density that originates from the inci-
dent field u(r) = u(2) in Eq. (A5) is found from (with p(2)

0 as
the pressure resulting from the incident field)

∇ju
(2)
i = rα Fαji,

p(2)
0 = η0 rβ Fααβ

(A49)
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to be equal to

f (2)
0,i = a η0

[
r̂α r̂β Fαβi + r̂α r̂β Fiαβ − r̂i r̂β Fααβ

]
. (A50)

The two moments of the surface force density that are
needed in Eq. (A4) in the main text are thus found to be equal
to

∮∂V0

dS f (2)
i = 6 π η0 a

a2

6
∇2ui(r = rp),

(A51)

∮∂V0

dS r̂p r̂q f (2)
i =

π

3
a3 η0

[
5∇p∇qui + ∇i∇p uq + ∇i∇q up

− δip ∇
2uq − δiq∇

2up

]
r=rp

.

4. The third-order field

The third-order reflected flow field is found similarly, with
a little more effort, since the expressions for the higher-order
hydrodynamic connectors become more lengthy. The third-
order contribution v(3)

0 to the incident flow field incident field
is written as

u(3)(r) =
1
6

r r r
... G, (A52)

where
Gpγβα ≡

[
∇p∇γ ∇β uα(r)

]
r=0

. (A53)

For a non-translating and non-rotating sphere, stick boundary

conditions imply that ur(r) = −(1/6) rr r
... G for r ∈ ∂V0. The

field u0 in Eq. (A7) is thus equal to

u0(r) = −
1
6

r r r
... G , for r ∈ ∂V0. (A54)

The gradient expansion in Eq. (A8) contains only a single term
with l = 3 so that Eq. (A9) now reads

ur(r) = −
1
6

U(5)(r) � G, (A55)

where the contraction� is with respect to three indices. Explic-
itly denoting the contractions gives (where summations over
repeated indices is again understood)

ur,i = −
1
6

U (5)
iαβγp Gpγβα. (A56)

With some effort, the explicit expression for the reflected field
is found from the above explicit expression for U(5) that

ur,i =
a2

20

{
−

a3

r3
+

a7

r7

}
rβ Gβααi

+
a2

20

{
a3

r3
− 2

a5

r5
+

a7

r7

}
rβ Giααβ

−
1

60

{
3

a7

r7
+ 7

a9

r9

}
rαrβrγ Gαβγi

+
7

20

{
a7

r7
−

a9

r9

}
rαrβrγ Giαβγ

−
1

20

{
5

a5

r5
− 12

a7

r7
+ 7

a9

r9

}
rirβrγ Gβααγ

−
21
20

a2

r4

{
a5

r5
−

a7

r7

}
rirαrβrγrp Gαβγp. (A57)

The pressure pr is again obtained from Eq. (A15). From
the first and fourth expression in Eq. (A13), it is readily found
that

∇2ur,i = −
1
6

[
∇2U (5)

ipαβγ

]
Gpγβα

=
1
6

[
a7

150
∇2

(
r2 H (5)

iαβγp

)
+

a5

10
∇2

(
r2 H (3)

iαβ

)
δγp

]
Gpγβα

= −
a5

150

[
3 a2 H (5)

iαβγp + 25 H (3)
iαβ δγp

]
Gpγβα. (A58)

It immediately follows that

pr = − η0
a5

150

[
3a2 H (4)

αβγp+25H (2)
αβδγp

]
Gpγβα. (A59)

The explicit expression for the pressure is thus

pr =
η0

10

[{
9

a7

r7
− 5

a5

r5

}
rβrγ Gααβγ − 21

a7

r9
rprαrβrγ Gpγβα

]
.

(A60)

The stress contribution ∼∇jur ,i arising from the reflected
field, at the surface of the sphere, follows from Eq. (A57),

∇jur,i = −
1
5

rjrβ Gβααi −
1
2

rαrβ Gαβji

+
7
5

1

a2
rjrαrβrγ

[
1
2

Giαβγ + Gαβγi

]

+
1
5

1

a2
rjrirβrγ

[
Gβααγ −

21
2

1

a2
rαrδ Gαβγδ

]
.

(A61)

From Eqs. (A16), (A60), and (A61), it is thus found that
the force density f (2)

r on the surface of the sphere due to the
reflected field is equal to

f (3)
r,i = − a2 η0

[
1
5

r̂β Gβααi −
1
5

r̂α r̂β r̂γ Giαβγ

−
9

10
r̂α r̂β r̂γ Gαβγi +

1
5

r̂i r̂β r̂γ Gβααγ

]
. (A62)

The additional force density that originates from the inci-
dent field u(r) = u(3) in Eq. (A5) is found from (with p(3)

0 as
the pressure resulting from the incident field)

∇jv
(3)
0,i =

1
2

rα rβ Gβαji,

p(3)
0 = η0 rβ rγ Gβααγ,

(A63)

while the body force B(3) = −η0 ∇
2v(3)

0 +∇p(3)
0 that is necessary

to maintain the third-order incident flow field is equal to

B(3)
i = η0 rβ Giααβ . (A64)

The additional force density is thus equal to

f0,i = a2 η0

[
1
2

r̂α r̂β r̂γ Gβαγi

+
1
2

r̂α r̂β r̂γ Gβαiγ − r̂i r̂β r̂γ Gβααγ

]
. (A65)
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The first-order moment of the total surface force density
that is needed in Eq. (A4) is thus found to be equal to

∮∂V0

dS r̂p f (3)
i =

π

15
a4 η0

[
3∇2

(
∇pui(r) + ∇iup

)
+ 5∇2

(
∇pui(r) − ∇iup

) ]
r=rp

. (A66)

5. The fourth-order force moment

For the flow field u(4), we need only the zeroth-order
moment of the surface force density. In order to obtain that
force moment, it is not necessary to calculate the reflected
flow field and pressure as in Subsections 2–4 in this Appendix.
Instead, this force moment can be obtained from the integral
expression for the total flow field v that exists after immersion
of the sphere in the flow field u(4),

v(r) = u(4)(r) − ∮∂V0

dS′ T(r − r′) · f (4)
r (r′), (A67)

where T is the Oseen tensor. Note that the surface force density
of corresponding to the reflected field occurs in the integral.
For a sphere that is fixed, that is, not translating nor rotating,
stick boundary conditions imply that

u(4)(r) = ∮∂V0

dS′ T(r − r′) · f (4)
r (r′) , for r ∈ ∂V . (A68)

Integrating both sides over the surface of the sphere, using that

∮∂V0

dS u(4)(r) =
π

30
a6 ∇2∇2u, (A69)

where, as before, u is understood to be evaluated at the
midpoint of the sphere and

∮∂V0

dS Tij(r − r′) =
2a
3η0

δij, (A70)

it is thus found that

∮∂V0

dS f (4)
r (r) = 6 π η0 a

a4

120
∇2∇2u. (A71)

The contribution from the incident field u(4) can be found
as follows. Since

∇ju
(4)
i =

1
6

rα rβ rγ Hαβγji, (A72)

where
Hαβγji = ∇α∇β∇γ∇ju

(0)
i , (A73)

it follows that the corresponding pressure is equal to

p(4)
0 =

1
2
η0 rβ rγ rq Hααβγq, (A74)

while the body force is equal to

B(4)
i = η0 rβ rγ Hβααiγ. (A75)

The force density arising from the incident field is therefore
equal to

f (4)
0,i =

1
6
η0 a3

[
r̂α r̂β r̂γ r̂q Hαβγqi + r̂α r̂β r̂γ r̂q Hαβγiq

−3 r̂i r̂β r̂γ r̂q Hααβγq

]
(A76)

so that

∮∂V0

dS f (4)
0 (r) = 0. (A77)

The total force is thus found to be equal to

∮∂V0

dS f (4)(r) = 6 π η0 a
a4

120
∇2∇2u. (A78)

This force is non-zero since there is an external body force
acting on the solvent to sustain the non-uniform flow.

6. The translational and rotational velocities

The velocities of the sphere can be obtained from force
balance on the diffusive time scale, where the total hydrody-
namic force Fh balances the Brownian force FBr =−kBT∇ ln ρ
(with ρ as the number density of spheres) on the sphere,

Fh + FBr = 0. (A79)

Since

Fh = ∮∂V0

dS
[

f (0)(r) + f (1)(r) + f (2)(r) + f (3)(r) + f (4)(r)
]
,

(A80)

it follows from Eqs. (A23), (A51), and (A77) that

V(p) =

[
u(r) +

a2

6
∇2u(r) +

a4

120
∇2∇2u(r)

]

r=rp

+
1

6π η0 a
FBr .

(A81)

This is Faxén’s law for translational motion except for the last
term between the square brackets, which is due to the fact that
the flow field u is not body-force free (otherwise∇2∇2u and all
other higher-order derivatives are zero). The above expression
is valid for flow fields that are sustained by a non-zero body
force up to order (a∇)6.

Since for spherical particles (at infinite dilution) there is
no Brownian torque, the hydrodynamic torque is zero,

T h = 0. (A82)

Since

Th = ∮∂V0

dS r ×
[

f (0)(r) + f (1)(r) + f (2)(r) + f (3)(r) + f (4)(r)
]

(A83)

and from Eqs. (A37) and (A66), we have

∮∂V0

dS r × f (1)(r) = 8 π η0 a3
[

1
2
∇ × u −Ω(p)

]
,

∮∂V0

dS r × f (3)(r) = 8 π η0 a3 a2

12
∇ × ∇2u,

(A84)

while the integrals over the even-superscripted forces are zero,
it thus follows that

Ω(p) =

[
1
2
∇ × u(r) +

a2

12
∇ × ∇2u(r)

]

r=rp

. (A85)

This is the rotational Faxén’s theorem (in the absence of an
external torque), where the last term is due to the non-zero
body force to sustain the field u (otherwise η0∇ × ∇

2u and all
higher-order derivatives are zero). This relation is valid up to
order ∇(∇2 )2.
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This concludes the calculation of the induced forces den-
sities. Gathering all results finally leads to Eq. (11) in the main
text for the force moments. Note that all gradient terms that
are due to the non-zero body force contribute to gradients in
the expansion of the stress tensor that are of higher-order than
those given in Eq. (2) in the main text of the paper, which can
therefore be ignored.

APPENDIX B: THE PAIR-INTERACTION POTENTIAL

For the pair-interaction potential, we use a realistic poten-
tial as the sum of an excluded volume hard-core interaction
potential Vhc and a DLVO potential that consists of an attrac-
tive van der Waals potential V vdW and an electrostatic repulsive
part V elec,

V = Voverlap + V el + V vdW ,

where

Vhc = 0 for r ≥ 2R,

= ∞ for r < 2R,

V vdW (r) = −
AH

12

[
4 R2

r2−4 R2
+

4 R2

r2
+2 ln

(
r2−4 R2

r2

)]
,

V el(r) = kBT E exp{−κD(r − 2 R)},

where R is the radius of the spheres, AH is the Hamaker
constant, κD is the Debye length, and

E =
16πdε

z2 e2
tanh2

(
zeψ0

4 kBT

)
is the electrostatic potential energy in units of kBT at contact
of two spheres. The interaction parameters are chosen as AH

= 0.77 kBT, κ−1
D = 0.1 R, and E = 50 (corresponding to 1 µm

spheres with a surface potential of 7 mV in monovalent ionic
aqueous solution).
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