001     848411
005     20240712101001.0
024 7 _ |a 10.5194/acp-18-8621-2018
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/20055
|2 Handle
024 7 _ |a WOS:000435651200001
|2 WOS
024 7 _ |a altmetric:43900840
|2 altmetric
037 _ _ |a FZJ-2018-03647
082 _ _ |a 550
100 1 _ |a von Schneidemesser, Erika
|0 0000-0003-1386-285X
|b 0
|e Corresponding author
245 _ _ |a BAERLIN2014 – stationary measurements and source apportionment at an urban background station in Berlin, Germany
260 _ _ |a Katlenburg-Lindau
|c 2018
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542209022_10165
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The "Berlin Air quality and Ecosystem Research: Local and long-range Impact of anthropogenic and Natural hydrocarbons" (BAERLIN2014) campaign was conducted during the 3 summer months (June–August) of 2014. During this measurement campaign, both stationary and mobile measurements were undertaken to address complementary aims. This paper provides an overview of the stationary measurements and results that were focused on characterization of gaseous and particulate pollution, including source attribution, in the Berlin–Potsdam area, and quantification of the role of natural sources in determining levels of ozone and related gaseous pollutants. Results show that biogenic contributions to ozone and particulate matter are substantial. One indicator for ozone formation, the OH reactivity, showed a 31% (0.82±0.44s−1) and 75% (3.7±0.90s−1) contribution from biogenic non-methane volatile organic compounds (NMVOCs) for urban background (2.6±0.68s−1) and urban park (4.9±1.0s−1) location, respectively, emphasizing the importance of such locations as sources of biogenic NMVOCs in urban areas. A comparison to NMVOC measurements made in Berlin approximately 20 years earlier generally show lower levels today for anthropogenic NMVOCs. A substantial contribution of secondary organic and inorganic aerosol to PM10 concentrations was quantified. In addition to secondary aerosols, source apportionment analysis of the organic carbon fraction identified the contribution of biogenic (plant-based) particulate matter, as well as primary contributions from vehicles, with a larger contribution from diesel compared to gasoline vehicles, as well as a relatively small contribution from wood burning, linked to measured levoglucosan.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bonn, Boris
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Butler, Tim M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ehlers, Christian
|0 P:(DE-Juel1)8878
|b 3
700 1 _ |a Gerwig, Holger
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hakola, Hannele
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hellén, Heidi
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kerschbaumer, Andreas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Klemp, Dieter
|0 P:(DE-Juel1)16218
|b 8
|u fzj
700 1 _ |a Kofahl, Claudia
|0 P:(DE-Juel1)159102
|b 9
700 1 _ |a Kura, Jürgen
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lüdecke, Anja
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Nothard, Rainer
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Pietsch, Axel
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Quedenau, Jörn
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Schäfer, Klaus
|0 0000-0003-2491-6331
|b 15
700 1 _ |a Schauer, James J.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Singh, Ashish
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Villalobos, Ana-Maria
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Wiegner, Matthias
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Lawrence, Mark G.
|0 P:(DE-HGF)0
|b 20
773 _ _ |a 10.5194/acp-18-8621-2018
|g Vol. 18, no. 12, p. 8621 - 8645
|0 PERI:(DE-600)2069847-1
|n 12
|p 8621 - 8645
|t Atmospheric chemistry and physics
|v 18
|y 2018
|x 1680-7324
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/848411/files/acp-18-8621-2018.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/848411/files/acp-18-8621-2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:848411
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)16218
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21