000848464 001__ 848464
000848464 005__ 20210129234139.0
000848464 0247_ $$2doi$$a10.1039/C8NR02562B
000848464 0247_ $$2ISSN$$a2040-3364
000848464 0247_ $$2ISSN$$a2040-3372
000848464 0247_ $$2pmid$$apmid:29888770
000848464 0247_ $$2WOS$$aWOS:000436133400031
000848464 0247_ $$2altmetric$$aaltmetric:45035111
000848464 037__ $$aFZJ-2018-03698
000848464 082__ $$a600
000848464 1001_ $$0P:(DE-Juel1)142194$$aRodenbücher, C.$$b0$$eCorresponding author
000848464 245__ $$aLocal surface conductivity of transition metal oxides mapped with true atomic resolution
000848464 260__ $$aCambridge$$bRSC Publ.$$c2018
000848464 3367_ $$2DRIVER$$aarticle
000848464 3367_ $$2DataCite$$aOutput Types/Journal article
000848464 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552635753_21968
000848464 3367_ $$2BibTeX$$aARTICLE
000848464 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848464 3367_ $$00$$2EndNote$$aJournal Article
000848464 520__ $$aThe introduction of transition metal oxides for building nanodevices in information technology promises to overcome the scaling limits of conventional semiconductors and to reduce global power consumption significantly. However, oxide surfaces can exhibit heterogeneity on the nanoscale e.g. due to relaxation, rumpling, reconstruction, or chemical variations which demands for direct characterization of electronic transport phenomena down to the atomic level. Here we demonstrate that conductivity mapping is possible with true atomic resolution using the tip of a local conductivity atomic force microscope (LC-AFM) as the mobile nanoelectrode. The application to the prototypical transition metal oxide TiO2 self-doped by oxygen vacancies reveals the existence of highly confined current paths in the first stage of thermal reduction. Assisted by density functional theory (DFT) we propose that the presence of oxygen vacancies in the surface layer of such materials can introduce short range disturbances of the electronic structure with confinement of metallic states on the sub-nanometre scale. After prolonged reduction, the surfaces undergo reconstruction and the conductivity changes from spot-like to homogeneous as a result of surface transformation. The periodic arrangement of the reconstruction is clearly reflected in the conductivity maps as concluded from the simultaneous friction force and LC-AFM measurements. The second prototype metal oxide SrTiO3 also reveals a comparable transformation in surface conductivity from spot-like to homogeneous upon reduction showing the relevance of nanoscale inhomogeneities for the electronic transport properties and the utility of a high-resolution LC-AFM as a convenient tool to detect them.
000848464 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000848464 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x1
000848464 588__ $$aDataset connected to CrossRef
000848464 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b1
000848464 7001_ $$0P:(DE-Juel1)125382$$aSpeier, W.$$b2
000848464 7001_ $$00000-0001-9596-4539$$aKubacki, J.$$b3
000848464 7001_ $$00000-0001-9197-6890$$aWojtyniak, M.$$b4
000848464 7001_ $$00000-0002-7898-5087$$aRogala, M.$$b5
000848464 7001_ $$00000-0002-8239-0043$$aWrana, D.$$b6
000848464 7001_ $$00000-0002-6931-3545$$aKrok, F.$$b7
000848464 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b8$$ufzj
000848464 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C8NR02562B$$gVol. 10, no. 24, p. 11498 - 11505$$n24$$p11498 - 11505$$tNanoscale$$v10$$x2040-3372$$y2018
000848464 8564_ $$uhttps://juser.fz-juelich.de/record/848464/files/c8nr02562b.pdf$$yRestricted
000848464 8564_ $$uhttps://juser.fz-juelich.de/record/848464/files/c8nr02562b.gif?subformat=icon$$xicon$$yRestricted
000848464 8564_ $$uhttps://juser.fz-juelich.de/record/848464/files/c8nr02562b.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000848464 8564_ $$uhttps://juser.fz-juelich.de/record/848464/files/c8nr02562b.jpg?subformat=icon-180$$xicon-180$$yRestricted
000848464 8564_ $$uhttps://juser.fz-juelich.de/record/848464/files/c8nr02562b.jpg?subformat=icon-640$$xicon-640$$yRestricted
000848464 909CO $$ooai:juser.fz-juelich.de:848464$$pVDB
000848464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b0$$kFZJ
000848464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b1$$kFZJ
000848464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125382$$aForschungszentrum Jülich$$b2$$kFZJ
000848464 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)125382$$aRWTH Aachen$$b2$$kRWTH
000848464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130993$$aForschungszentrum Jülich$$b8$$kFZJ
000848464 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000848464 9141_ $$y2018
000848464 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2015
000848464 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848464 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848464 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000848464 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848464 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000848464 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848464 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848464 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000848464 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2015
000848464 920__ $$lyes
000848464 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000848464 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000848464 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x2
000848464 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000848464 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x4
000848464 980__ $$ajournal
000848464 980__ $$aVDB
000848464 980__ $$aI:(DE-Juel1)PGI-7-20110106
000848464 980__ $$aI:(DE-Juel1)PGI-1-20110106
000848464 980__ $$aI:(DE-Juel1)IAS-1-20090406
000848464 980__ $$aI:(DE-82)080009_20140620
000848464 980__ $$aI:(DE-82)080012_20140620
000848464 980__ $$aUNRESTRICTED