Hauptseite > Publikationsdatenbank > Local surface conductivity of transition metal oxides mapped with true atomic resolution > print |
001 | 848464 | ||
005 | 20210129234139.0 | ||
024 | 7 | _ | |a 10.1039/C8NR02562B |2 doi |
024 | 7 | _ | |a 2040-3364 |2 ISSN |
024 | 7 | _ | |a 2040-3372 |2 ISSN |
024 | 7 | _ | |a pmid:29888770 |2 pmid |
024 | 7 | _ | |a WOS:000436133400031 |2 WOS |
024 | 7 | _ | |a altmetric:45035111 |2 altmetric |
037 | _ | _ | |a FZJ-2018-03698 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Rodenbücher, C. |0 P:(DE-Juel1)142194 |b 0 |e Corresponding author |
245 | _ | _ | |a Local surface conductivity of transition metal oxides mapped with true atomic resolution |
260 | _ | _ | |a Cambridge |c 2018 |b RSC Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1552635753_21968 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The introduction of transition metal oxides for building nanodevices in information technology promises to overcome the scaling limits of conventional semiconductors and to reduce global power consumption significantly. However, oxide surfaces can exhibit heterogeneity on the nanoscale e.g. due to relaxation, rumpling, reconstruction, or chemical variations which demands for direct characterization of electronic transport phenomena down to the atomic level. Here we demonstrate that conductivity mapping is possible with true atomic resolution using the tip of a local conductivity atomic force microscope (LC-AFM) as the mobile nanoelectrode. The application to the prototypical transition metal oxide TiO2 self-doped by oxygen vacancies reveals the existence of highly confined current paths in the first stage of thermal reduction. Assisted by density functional theory (DFT) we propose that the presence of oxygen vacancies in the surface layer of such materials can introduce short range disturbances of the electronic structure with confinement of metallic states on the sub-nanometre scale. After prolonged reduction, the surfaces undergo reconstruction and the conductivity changes from spot-like to homogeneous as a result of surface transformation. The periodic arrangement of the reconstruction is clearly reflected in the conductivity maps as concluded from the simultaneous friction force and LC-AFM measurements. The second prototype metal oxide SrTiO3 also reveals a comparable transformation in surface conductivity from spot-like to homogeneous upon reduction showing the relevance of nanoscale inhomogeneities for the electronic transport properties and the utility of a high-resolution LC-AFM as a convenient tool to detect them. |
536 | _ | _ | |a 142 - Controlling Spin-Based Phenomena (POF3-142) |0 G:(DE-HGF)POF3-142 |c POF3-142 |f POF III |x 0 |
536 | _ | _ | |a Magnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101) |0 G:(DE-Juel1)jiff13_20131101 |c jiff13_20131101 |f Magnetic Anisotropy of Metallic Layered Systems and Nanostructures |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Bihlmayer, G. |0 P:(DE-Juel1)130545 |b 1 |
700 | 1 | _ | |a Speier, W. |0 P:(DE-Juel1)125382 |b 2 |
700 | 1 | _ | |a Kubacki, J. |0 0000-0001-9596-4539 |b 3 |
700 | 1 | _ | |a Wojtyniak, M. |0 0000-0001-9197-6890 |b 4 |
700 | 1 | _ | |a Rogala, M. |0 0000-0002-7898-5087 |b 5 |
700 | 1 | _ | |a Wrana, D. |0 0000-0002-8239-0043 |b 6 |
700 | 1 | _ | |a Krok, F. |0 0000-0002-6931-3545 |b 7 |
700 | 1 | _ | |a Szot, K. |0 P:(DE-Juel1)130993 |b 8 |u fzj |
773 | _ | _ | |a 10.1039/C8NR02562B |g Vol. 10, no. 24, p. 11498 - 11505 |0 PERI:(DE-600)2515664-0 |n 24 |p 11498 - 11505 |t Nanoscale |v 10 |y 2018 |x 2040-3372 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848464/files/c8nr02562b.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848464/files/c8nr02562b.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848464/files/c8nr02562b.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848464/files/c8nr02562b.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/848464/files/c8nr02562b.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |p VDB |o oai:juser.fz-juelich.de:848464 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)142194 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130545 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)125382 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)125382 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130993 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |2 G:(DE-HGF)POF3-100 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOSCALE : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NANOSCALE : 2015 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 2 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 3 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|