000849584 001__ 849584
000849584 005__ 20210129234201.0
000849584 037__ $$aFZJ-2018-03763
000849584 041__ $$aEnglish
000849584 1001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b0$$eCorresponding author$$ufzj
000849584 1112_ $$a3rd Internatoinal Symposium of Quantum Beam Science at Ibaraki University,$$cMito$$d2018-05-30 - 2018-06-02$$wJapan
000849584 245__ $$aStructure and Dynamics at the solid-liquid interface
000849584 260__ $$c2018
000849584 3367_ $$033$$2EndNote$$aConference Paper
000849584 3367_ $$2DataCite$$aOther
000849584 3367_ $$2BibTeX$$aINPROCEEDINGS
000849584 3367_ $$2DRIVER$$aconferenceObject
000849584 3367_ $$2ORCID$$aLECTURE_SPEECH
000849584 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1530606072_18591$$xPlenary/Keynote
000849584 502__ $$cIbaraki U
000849584 520__ $$aMicroemulsions and lipid bilayer stacks have been studied adjacent to the solid hydrophobic interface using grazing incidence small angle neutron scattering (GISANS), grazing incidence neutron spin echo spectroscopy (GINSES), and neutron reflectometry (NR). The microemulsions display lamellar order while the structure is bicontinuous in the bulk [1]. The dynamics at the interface are approx. three times faster than in the bulk [2]. This coincides with the lubrication effect that describes the facilitated flow of the lamellar structure along the interface. The whole scenario was taken to a volume sample where interfaces were introduced by clay particles (at approx. 1% vol. content). Small platelets induce a rather weakly ordered lamellar structure while the large platelets have a well-ordered lamellar structure at the interface [3]. In rheology experiments the quality of the lamellar structure can be monitored as higher and lower viscosities, and therefore is a macroscopic confirmation of the lubrication effect [4]. For some examples of crude oils we could considerably lower the viscosity using clay particles. When the particle content is raised further to 2% to 3%vol, the lamellar order prevails, and the capillary condensation phase transition for microemulsions is observed [5]. The lipid bilayer system displays lamellar order at low concentrations of a disturbing molecule ibuprofen. The structure can turn to hexagonal when high concentrations of ibuprofen are added [6]. The lamellar system displays an astonishing viscoelastic behavior on the nanosecond timescale when applying GINSES [7]. This behavior is explained using a theory for lamellar stacks at an interface. Viscoelasticity of membrane stacks is highly interesting for mammalian joints where shocks could be dissipated over larger areas.All in all this rich information about near surface dynamics became accessible using a neutron resonator [8], which enhances the neutron wave field in the sample and, therefore, the scattering intensity for these difficult experiments.Keywords: GISANS, GINSES, Near Surface Structure and Dynamics, Boundary Condition, Industrial ApplicationsReferences[1] M. Kerscher et al. Phys. Rev. E 2011, 83, 030401.[2] H. Frielinghaus et al. Phys. Rev. E 2012, 85, 041408.[3] F. Lipfert et al. Nanoscale 2015, 7, 2578.[4] M. Gvaramia et al. arXiv 2018, 1709.05198 & submitted to Sci. Reports 2018.[5] M. Gvaramia et al. submitted to J. Coll. Interf. Sci. 2018.[6] S. Jaksch et al. Phys. Rev. E 2015, 91, 022716.[7] S. Jaksch et al. Sci. Reports 2017, 7, 4417.[8] H. Frielinghaus et al. Nucl. Instr. Meth. Phys. Res. A 2017, 871, 71.
000849584 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000849584 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000849584 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000849584 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000849584 65027 $$0V:(DE-MLZ)SciArea-150$$2V:(DE-HGF)$$aIndustrial Application$$x1
000849584 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000849584 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x1
000849584 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000849584 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x1
000849584 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x2
000849584 909CO $$ooai:juser.fz-juelich.de:849584$$pVDB$$pVDB:MLZ
000849584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b0$$kFZJ
000849584 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000849584 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000849584 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000849584 9141_ $$y2018
000849584 920__ $$lyes
000849584 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000849584 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000849584 980__ $$aconf
000849584 980__ $$aVDB
000849584 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000849584 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000849584 980__ $$aUNRESTRICTED