000849597 001__ 849597
000849597 005__ 20210324084849.0
000849597 0247_ $$2Handle$$a2128/19179
000849597 0247_ $$2ISSN$$a1866-1807
000849597 020__ $$a978-3-95806-324-2
000849597 037__ $$aFZJ-2018-03776
000849597 041__ $$aEnglish
000849597 1001_ $$0P:(DE-Juel1)161368$$aGehlmann, Mathias$$b0$$eCorresponding author$$gmale$$ufzj
000849597 245__ $$aThe electronic structure of transition metal dichalcogenides investigated by angle-resolved photoemission spectroscopy$$f- 2018-06-29
000849597 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2018
000849597 300__ $$aII, 108, 1-XVIII S.
000849597 3367_ $$2DataCite$$aOutput Types/Dissertation
000849597 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000849597 3367_ $$2ORCID$$aDISSERTATION
000849597 3367_ $$2BibTeX$$aPHDTHESIS
000849597 3367_ $$02$$2EndNote$$aThesis
000849597 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1531718723_26641
000849597 3367_ $$2DRIVER$$adoctoralThesis
000849597 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v170
000849597 502__ $$aUniversität Duisburg, Diss., 2018$$bDr.$$cUniversität Duisburg$$d2018
000849597 520__ $$aVan der Waals (vdW) materials offer a perspective to revolutionize basically every facet of nowadays technology with a new generation of atomically thin devices. Transition metal dichalcogenides (TMDCs) are a family of vdW crystals, that includes several semiconducting materials with band gaps within the optical range. This makes them ideal for numerous applications such as transistors, optical sensors, solar cells, and LEDs. In this study we focuses on two members of the TMDC family: molybdenum disufide (MoS$_{2}$) and rhenium disulfide (ReS$_{2}$). Using a combination of angle-resolved photoemission spectroscopy (APRES) with density functional theory (DFT), we provide a thorough analysis of the electronic band structure of these two exceptional materials. In monolayers of MoS$_{2}$ the combination of broken inversion symmetry with the heavy element molybdenum leads to a large spin-splitting of distinct valleys within its electronic structure. Therefore, MoS$_{2}$ combines the essential ingredients for socalled $\textit{spintronics}$ and $\textit{valleytronics}$. It was generally believed that these fascinating features are forbidden in MoS$_{2}$ bulk crystals due to their centrosymmetric space group. This study demonstrates that the strong confinement of the valleys within the vdW layers leads to a recently discovered type of $\textit{hidden spin-polarization}$, which results in quasi two-dimensional, highly spin-polarized states in this centrosymmetricbulk crystal. Furthermore, we present the first ARPES study of ReS$_{2}$ bulk, monolayer, and bilayer crystals. Recent literature reported indications for a total confinement of the bulk electronic structure within the plains of the vdW layers. Our study comes to the opposite conclusion. Based on the observation of a considerable out-of-plane dispersion in the ARPES experiments, as well as in the band structure calculations, we show that valence electrons are significantly delocalized across the vdW gap. In addition, we identify the valence band maximum of bulk, monolayer, and bilayer ReS$_{2}$ experimentally. The combination of ARPES and band structure calculations shows that ReS$_{2}$ undergoes a transition from a direct band gap in the bulk and bilayer to an indirect gap in the monolayer.
000849597 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000849597 8564_ $$uhttps://juser.fz-juelich.de/record/849597/files/Schluesseltech_170.pdf$$yOpenAccess
000849597 8564_ $$uhttps://juser.fz-juelich.de/record/849597/files/Schluesseltech_170.gif?subformat=icon$$xicon$$yOpenAccess
000849597 8564_ $$uhttps://juser.fz-juelich.de/record/849597/files/Schluesseltech_170.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000849597 8564_ $$uhttps://juser.fz-juelich.de/record/849597/files/Schluesseltech_170.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000849597 8564_ $$uhttps://juser.fz-juelich.de/record/849597/files/Schluesseltech_170.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000849597 8564_ $$uhttps://juser.fz-juelich.de/record/849597/files/Schluesseltech_170.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000849597 909CO $$ooai:juser.fz-juelich.de:849597$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000849597 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000849597 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000849597 9141_ $$y2018
000849597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161368$$aForschungszentrum Jülich$$b0$$kFZJ
000849597 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000849597 920__ $$lyes
000849597 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000849597 980__ $$aphd
000849597 980__ $$aVDB
000849597 980__ $$abook
000849597 980__ $$aI:(DE-Juel1)PGI-6-20110106
000849597 980__ $$aUNRESTRICTED
000849597 9801_ $$aFullTexts