000849598 001__ 849598
000849598 005__ 20210129234206.0
000849598 0247_ $$2doi$$a10.3390/toxins10070256
000849598 0247_ $$2Handle$$a2128/19190
000849598 0247_ $$2pmid$$apmid:29932113
000849598 0247_ $$2WOS$$aWOS:000442594000004
000849598 037__ $$aFZJ-2018-03777
000849598 082__ $$a610
000849598 1001_ $$0P:(DE-HGF)0$$aSueck, Franziska$$b0
000849598 245__ $$aInteraction of Ochratoxin A and Its Thermal Degradation Product 2′R-Ochratoxin A with Human Serum Albumin
000849598 260__ $$aBasel$$bMDPI$$c2018
000849598 3367_ $$2DRIVER$$aarticle
000849598 3367_ $$2DataCite$$aOutput Types/Journal article
000849598 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530537150_18593
000849598 3367_ $$2BibTeX$$aARTICLE
000849598 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849598 3367_ $$00$$2EndNote$$aJournal Article
000849598 520__ $$aOchratoxin A (OTA) is a toxic secondary metabolite produced by several fungal species of the genus Penicillium and Aspergillus. 2′R-Ochratoxin A (2′R-OTA) is a thermal isomerization product of OTA formed during food processing at high temperatures. Both compounds are detectable in human blood in concentrations between 0.02 and 0.41 µg/L with 2′R-OTA being only detectable in the blood of coffee drinkers. Humans have approximately a fifty-fold higher exposure through food consumption to OTA than to 2′R-OTA. In human blood, however, the differences between the concentrations of the two compounds is, on average, only a factor of two. To understand these unexpectedly high 2′R-OTA concentrations found in human blood, the affinity of this compound to the most abundant protein in human blood the human serum albumin (HSA) was studied and compared to that of OTA, which has a well-known high binding affinity. Using fluorescence spectroscopy, equilibrium dialysis, circular dichroism (CD), high performance affinity chromatography (HPAC), and molecular modelling experiments, the affinities of OTA and 2′R-OTA to HSA were determined and compared with each other. For the affinity of HSA towards OTA, a logK of 7.0–7.6 was calculated, while for its thermally produced isomer 2′R-OTA, a lower, but still high, logK of 6.2–6.4 was determined. The data of all experiments showed consistently that OTA has a higher affinity to HSA than 2′R-OTA. Thus, differences in the affinity to HSA cannot explain the relatively high levels of 2′R-OTA found in human blood samples
000849598 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000849598 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000849598 536__ $$0G:(DE-HGF)POF3-561$$a561 - Biological Key Regulators and Small Chemical Compounds (POF3-561)$$cPOF3-561$$fPOF III$$x2
000849598 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x3
000849598 588__ $$aDataset connected to CrossRef
000849598 7001_ $$0P:(DE-HGF)0$$aPoór, Miklós$$b1
000849598 7001_ $$0P:(DE-HGF)0$$aFaisal, Zelma$$b2
000849598 7001_ $$0P:(DE-Juel1)174133$$aGertzen, Christoph$$b3
000849598 7001_ $$0P:(DE-HGF)0$$aCramer, Benedikt$$b4
000849598 7001_ $$0P:(DE-HGF)0$$aLemli, Beáta$$b5
000849598 7001_ $$0P:(DE-HGF)0$$aKunsági-Máté, Sándor$$b6
000849598 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b7
000849598 7001_ $$00000-0003-3296-3058$$aHumpf, Hans-Ulrich$$b8$$eCorresponding author
000849598 773__ $$0PERI:(DE-600)2518395-3$$a10.3390/toxins10070256$$gVol. 10, no. 7, p. 256 -$$n7$$p256 -$$tToxins$$v10$$x2072-6651$$y2018
000849598 8564_ $$uhttps://juser.fz-juelich.de/record/849598/files/toxins-10-00256.pdf$$yOpenAccess
000849598 8564_ $$uhttps://juser.fz-juelich.de/record/849598/files/toxins-10-00256.gif?subformat=icon$$xicon$$yOpenAccess
000849598 8564_ $$uhttps://juser.fz-juelich.de/record/849598/files/toxins-10-00256.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000849598 8564_ $$uhttps://juser.fz-juelich.de/record/849598/files/toxins-10-00256.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000849598 8564_ $$uhttps://juser.fz-juelich.de/record/849598/files/toxins-10-00256.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000849598 8564_ $$uhttps://juser.fz-juelich.de/record/849598/files/toxins-10-00256.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000849598 909CO $$ooai:juser.fz-juelich.de:849598$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000849598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174133$$aForschungszentrum Jülich$$b3$$kFZJ
000849598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b7$$kFZJ
000849598 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000849598 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000849598 9131_ $$0G:(DE-HGF)POF3-561$$1G:(DE-HGF)POF3-560$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioInterfaces in Technology and Medicine$$vBiological Key Regulators and Small Chemical Compounds$$x2
000849598 9141_ $$y2018
000849598 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849598 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000849598 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000849598 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849598 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTOXINS : 2015
000849598 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000849598 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000849598 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849598 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849598 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849598 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000849598 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849598 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000849598 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849598 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849598 920__ $$lyes
000849598 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000849598 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000849598 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x2
000849598 9801_ $$aFullTexts
000849598 980__ $$ajournal
000849598 980__ $$aVDB
000849598 980__ $$aUNRESTRICTED
000849598 980__ $$aI:(DE-Juel1)JSC-20090406
000849598 980__ $$aI:(DE-Juel1)NIC-20090406
000849598 980__ $$aI:(DE-Juel1)ICS-6-20110106
000849598 981__ $$aI:(DE-Juel1)IBI-7-20200312