000849644 001__ 849644
000849644 005__ 20240711092304.0
000849644 0247_ $$2doi$$a10.1016/j.ijhydene.2018.03.060
000849644 0247_ $$2ISSN$$a0360-3199
000849644 0247_ $$2ISSN$$a1879-3487
000849644 0247_ $$2WOS$$aWOS:000431747600016
000849644 0247_ $$2altmetric$$aaltmetric:44355898
000849644 037__ $$aFZJ-2018-03785
000849644 082__ $$a660
000849644 1001_ $$0P:(DE-HGF)0$$aEscolástico, S.$$b0
000849644 245__ $$aChemical stability in H 2 S and creep characterization of the mixed protonic conductor Nd 5.5 WO 11.25-δ
000849644 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000849644 3367_ $$2DRIVER$$aarticle
000849644 3367_ $$2DataCite$$aOutput Types/Journal article
000849644 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530102100_25293
000849644 3367_ $$2BibTeX$$aARTICLE
000849644 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849644 3367_ $$00$$2EndNote$$aJournal Article
000849644 520__ $$aThe integration of hydrogen permeable membranes in catalytic membrane reactors for thermodynamically limited reactions such as steam methane reforming can improve the per-pass yield and simultaneously produce a high-purity H2 stream. Mixed protonic-electronic materials based membranes are potential candidates for these applications due to their elevated temperature operation, good stability and potentially low cost. However, a specific mechanical behavior and stability under harsh atmospheres is needed to guarantee sufficient lifetime in real-world processes. This work presents the mechanical characterization and a study of the chemical stability under H2S containing atmospheres for the compound Nd5.5WO11.25-δ. Mechanical characterization was performed by micro-indentation and creep measurements in air. Chemical stability was evaluated by XRD and SEM and the effect of the H2S on the transport properties was evaluated by impedance spectroscopy. Under H2S atmospheres, the total conductivity increases at 600 °C and 700 °C. The conductivity increase is attributed to the incorporation of S2− ions in oxide-ion sublattice.
000849644 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000849644 588__ $$aDataset connected to CrossRef
000849644 7001_ $$0P:(DE-Juel1)145779$$aStournari, V.$$b1
000849644 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, J.$$b2
000849644 7001_ $$0P:(DE-HGF)0$$aHaas-Santo, K.$$b3
000849644 7001_ $$00000-0002-3110-6989$$aDittmeyer, R.$$b4
000849644 7001_ $$00000-0002-1515-1106$$aSerra, J. M.$$b5$$eCorresponding author
000849644 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.03.060$$gVol. 43, no. 17, p. 8342 - 8354$$n17$$p8342 - 8354$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2018
000849644 8564_ $$uhttps://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.pdf$$yRestricted
000849644 8564_ $$uhttps://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.gif?subformat=icon$$xicon$$yRestricted
000849644 8564_ $$uhttps://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000849644 8564_ $$uhttps://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000849644 8564_ $$uhttps://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000849644 8564_ $$uhttps://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000849644 909CO $$ooai:juser.fz-juelich.de:849644$$pVDB
000849644 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b2$$kFZJ
000849644 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000849644 9141_ $$y2018
000849644 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000849644 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849644 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849644 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000849644 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849644 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849644 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849644 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849644 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849644 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849644 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000849644 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849644 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000849644 980__ $$ajournal
000849644 980__ $$aVDB
000849644 980__ $$aI:(DE-Juel1)IEK-2-20101013
000849644 980__ $$aUNRESTRICTED
000849644 981__ $$aI:(DE-Juel1)IMD-1-20101013