001     849644
005     20240711092304.0
024 7 _ |a 10.1016/j.ijhydene.2018.03.060
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000431747600016
|2 WOS
024 7 _ |a altmetric:44355898
|2 altmetric
037 _ _ |a FZJ-2018-03785
082 _ _ |a 660
100 1 _ |a Escolástico, S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Chemical stability in H 2 S and creep characterization of the mixed protonic conductor Nd 5.5 WO 11.25-δ
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1530102100_25293
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The integration of hydrogen permeable membranes in catalytic membrane reactors for thermodynamically limited reactions such as steam methane reforming can improve the per-pass yield and simultaneously produce a high-purity H2 stream. Mixed protonic-electronic materials based membranes are potential candidates for these applications due to their elevated temperature operation, good stability and potentially low cost. However, a specific mechanical behavior and stability under harsh atmospheres is needed to guarantee sufficient lifetime in real-world processes. This work presents the mechanical characterization and a study of the chemical stability under H2S containing atmospheres for the compound Nd5.5WO11.25-δ. Mechanical characterization was performed by micro-indentation and creep measurements in air. Chemical stability was evaluated by XRD and SEM and the effect of the H2S on the transport properties was evaluated by impedance spectroscopy. Under H2S atmospheres, the total conductivity increases at 600 °C and 700 °C. The conductivity increase is attributed to the incorporation of S2− ions in oxide-ion sublattice.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stournari, V.
|0 P:(DE-Juel1)145779
|b 1
700 1 _ |a Malzbender, J.
|0 P:(DE-Juel1)129755
|b 2
700 1 _ |a Haas-Santo, K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dittmeyer, R.
|0 0000-0002-3110-6989
|b 4
700 1 _ |a Serra, J. M.
|0 0000-0002-1515-1106
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.ijhydene.2018.03.060
|g Vol. 43, no. 17, p. 8342 - 8354
|0 PERI:(DE-600)1484487-4
|n 17
|p 8342 - 8354
|t International journal of hydrogen energy
|v 43
|y 2018
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849644/files/1-s2.0-S0360319918308218-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:849644
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129755
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21