000849670 001__ 849670
000849670 005__ 20240712084529.0
000849670 0247_ $$2doi$$a10.1088/1361-6463/aacf74
000849670 0247_ $$2ISSN$$a0022-3727
000849670 0247_ $$2ISSN$$a0262-8171
000849670 0247_ $$2ISSN$$a0508-3443
000849670 0247_ $$2ISSN$$a1361-6463
000849670 0247_ $$2Handle$$a2128/19376
000849670 0247_ $$2WOS$$aWOS:000439238600001
000849670 037__ $$aFZJ-2018-03806
000849670 082__ $$a530
000849670 1001_ $$0P:(DE-Juel1)130210$$aAeberhard, Urs$$b0$$eCorresponding author
000849670 245__ $$aPhotovoltaics at the mesoscale: insights from quantum-kinetic simulation
000849670 260__ $$aBristol$$bIOP Publ.$$c2018
000849670 3367_ $$2DRIVER$$aarticle
000849670 3367_ $$2DataCite$$aOutput Types/Journal article
000849670 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583831016_3150
000849670 3367_ $$2BibTeX$$aARTICLE
000849670 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849670 3367_ $$00$$2EndNote$$aJournal Article
000849670 520__ $$aThis Topical Review discusses insights into the physical mechanisms of nanostructure solar cell operation as provided by numerical device simulation using a state-of-the-art quantum-kinetic framework based on the non-equilibrium Green's function formalism. After a brief introduction to the field of nanostructure photovoltaics and an overview of the existing literature on theoretical description and experimental implementation of such devices, the quantum-kinetic formulation of photovoltaic processes is discussed in detail, together with more conventional modeling approaches, such as global detailed balance theory and the semi-classical drift-diffusion-Poisson–Maxwell picture. Application examples provided subsequently include III–V semiconductor nanostructures ranging from ultra-thin absorbers to quantum well and quantum dot solar cell devices. The focus is on common features encountered in photovoltaic nanostructure architectures, such as the impact of configurational parameters and operating conditions on device characteristics, and the pronounced deviations from the semiclassical bulk picture. Ultra-thin absorbers are investigated with focus on the effect of built-in fields and contact configuration on radiative rates and currents. For the case of single and multi-quantum-well p–i–n devices, generation, recombination and escape of carriers are discussed, and quantum well superlattice solar cells are considered with regard to charge carrier transport regimes ranging from band-like transport in miniband states to sequential tunneling between neighboring periods. Double quantum well structures are further studied in the context of tunnel junctions for multi-junction solar cells. The investigation of quantum dots covers the fluorescence of colloidal nanoparticles for luminescent solar concentrators as well as the impact of configurational parameters on the photovoltaic properties of regimented quantum dot arrays, in both single-junction and intermediate-band configurations.
000849670 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000849670 536__ $$0G:(DE-Juel1)jiek50_20171101$$aAb-initio description of charge carrier dynamics at defective interfaces in solar cells (jiek50_20171101)$$cjiek50_20171101$$fAb-initio description of charge carrier dynamics at defective interfaces in solar cells$$x1
000849670 588__ $$aDataset connected to CrossRef
000849670 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/1361-6463/aacf74$$p323002$$tJournal of physics / D$$v51$$x1361-6463$$y2018
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Aeberhard_2018_J._Phys._D__Appl._Phys._51_323002.pdf$$yRestricted
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Aeberhard_2018_J._Phys._D__Appl._Phys._51_323002.gif?subformat=icon$$xicon$$yRestricted
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Aeberhard_2018_J._Phys._D__Appl._Phys._51_323002.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Aeberhard_2018_J._Phys._D__Appl._Phys._51_323002.jpg?subformat=icon-180$$xicon-180$$yRestricted
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Aeberhard_2018_J._Phys._D__Appl._Phys._51_323002.jpg?subformat=icon-640$$xicon-640$$yRestricted
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Author_version_accepted_manuscript.pdf$$yPublished on 2018-07-17. Available in OpenAccess from 2019-07-17.
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Author_version_accepted_manuscript.gif?subformat=icon$$xicon$$yPublished on 2018-07-17. Available in OpenAccess from 2019-07-17.
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Author_version_accepted_manuscript.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-07-17. Available in OpenAccess from 2019-07-17.
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Author_version_accepted_manuscript.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-07-17. Available in OpenAccess from 2019-07-17.
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Author_version_accepted_manuscript.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-07-17. Available in OpenAccess from 2019-07-17.
000849670 8564_ $$uhttps://juser.fz-juelich.de/record/849670/files/Author_version_accepted_manuscript.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-07-17. Available in OpenAccess from 2019-07-17.
000849670 909CO $$ooai:juser.fz-juelich.de:849670$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000849670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130210$$aForschungszentrum Jülich$$b0$$kFZJ
000849670 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000849670 9141_ $$y2018
000849670 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849670 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849670 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000849670 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS D APPL PHYS : 2015
000849670 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849670 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849670 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849670 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849670 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849670 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849670 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000849670 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849670 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000849670 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849670 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000849670 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000849670 9801_ $$aFullTexts
000849670 980__ $$ajournal
000849670 980__ $$aVDB
000849670 980__ $$aI:(DE-Juel1)IEK-5-20101013
000849670 980__ $$aI:(DE-82)080012_20140620
000849670 980__ $$aUNRESTRICTED
000849670 981__ $$aI:(DE-Juel1)IMD-3-20101013