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Abstract. This Topical Review discusses insights into the physical mechanisms
of nanostructure solar cell operation as provided by numerical device simulation
using a state-of-the-art quantum-kinetic framework based on the non-equilibrium
Green’s function (NEGF) formalism. After a brief introduction to the field
of nanostructure photovoltaics and an overview of the existing literature
on theoretical description and experimental implementation of such devices,
the quantum-kinetic formulation of photovoltaic processes is discussed in
detail, together with more conventional modeling approaches such as global
detailed balance theory and the semi-classical drift-diffusion-Poisson-Maxwell
picture. Application examples provided subsequently include III-V semiconductor
nanostructures ranging from ultra-thin absorbers to quantum well and quantum
dot solar cell devices. The focus is on common features encountered in
photovoltaic nanostructure architectures such as the impact of configurational
parameters and operating conditions on device characteristics, and the
pronounced deviations from the semiclassical bulk picture. Ultra-thin absorbers
are investigated with focus on the effect of built-in fields and contact configuration
on radiative rates and currents. For the case of single and multi-quantum-well
p-i-n devices, generation, recombination, and escape of carriers are discussed,
and quantum well superlattice solar cells are considered with regard to charge
carrier transport regimes ranging from band-like transport in miniband states
to sequential tunneling between neighboring periods. Double quantum well
structures are further studied in the context of tunnel junctions for multi-
junction solar cell. The investigation of quantum dots covers the fluorescence of
colloidal nanoparticles for luminescent solar concentrators as well as the impact of
configurational parameters on the photovoltaic properties of regimented quantum
dot arrays, both in single-junction and intermediate-band configurations.
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1. Introduction

Ever since the recognition of electricity production
from renewable energy sources as a central element of
a sustainable society, photovoltaic technology has been
in the focus of global research and development efforts.
Installed production and manufacturing capacities
are increasing exponentially and are approaching the
terawatt scale. However, in order to achieve the
ambitious goals regarding the reduction in green house
gases which is required to keep global warming below
2℃, a massive replacement of fossil power plants by
renewables is required. At the same time, renewable
alternatives to photovoltaics (PV) such as biomass
or wind energy become less available, either because
of competing utilization as food or as resources in
chemical industry or due to conflict with landscape and
wildlife protection. On the other hand, there is still
a huge potential for the installation of PV capacity,
especially in the exploitation of existing rooftop area
and in the integration into new buildings.

Currently, the market for PV modules is domi-
nated by standard crystalline silicon technology. While
this technology is mature and can be scaled to very
large capacities owing to the abundance of the raw ma-
terial, it is energy intensive in the production of the
wafers and, with the current record of 26.6% [1] slowly
approaching its theoretical efficiency limit of around
29% [2]. On the other hand, as the cost of a PV sys-
tem is no longer dominated by the cost of the solar cell,
but by components such as framing, support, wiring,
etc. which scale with area, efficiency is also the key
to a lower cost of PV technology. This calls for re-
newed efforts in the research on high-efficiency solar
cell concepts, of which a large variety have been pro-
posed over the years, with focus on reducing avoidable
thermalization and transmission losses [3–5].

In many cases, the implementation of advanced so-
lar cell architectures demands materials with tailored
optoelectronic properties, such as adjustable band gaps
in multi-junction architectures [6], reduced thermaliza-
tion rates in hot carrier solar cells [7] or additional ra-
diative subband transitions in intermediate band con-
cepts [8]. This explains the widespread application of
functional nanostructures with configuration-tunable
properties in the field of third generation photovoltaics,
most prominently in quantum well (QW) [9] and quan-
tum dot (QD) [10] solar cell devices.

Due to the complexity of configuration parame-

ter spaces and owing to the cost of nanotechnological
fabrication, theoretical modelling and simulation play
an important role in the design and optimization of
nanostructure-based solar cells. However, the peculiar
optoelectronic behavior of low dimensional materials
which roots in deviations from bulk physics, questions
the validity of the conventional semiclassical bulk pic-
ture of the photovoltaic processes if applied to photo-
voltaics at the mesoscale. On the other hand, while ab
initio quantum-mechanical simulations of the nanos-
tructure components provide an accurate description
of the electronic and vibrational structure, the exceed-
ingly high computational expense of such methods does
not allow (yet) for addressing directly the carrier dy-
namics to assess local device characteristics. Hence,
nanostructure solar cell device simulation convention-
ally relies on hybrid multiscale simulation approaches
that combine quantum-mechanically computed micro-
scopic rates with macroscopic and semiclassical trans-
port equations [11]. In such treatments, while experi-
mental characteristics are reasonably well reproduced
by fitting a suitable range of parameters, it is diffi-
cult to obtain physical insight into the competition of
different dynamical processes, such as, e.g., transport
and recombination mediated by localized states, as the
processes are not described on equal footing.

In this review, an alternative framework for the-
ory and simulation is discussed, which aims at provid-
ing a unified microscopic picture of mesoscopic pho-
tovoltaics from the dynamical processes up to device
characteristics, while reflecting the microscopic infor-
mation on key features in the electronic, optical and vi-
brational structure. The theoretical formalism is based
on the non-equilibrium quantum-statistical mechanics
of interacting charge carriers, photons and phonons in
selectively contacted (open) solid state systems and
hence represents the most fundamental and generally
valid description of solar cell device operation currently
available. As parametrization of the underlying effec-
tive model Hamiltonians from first principles is possi-
ble, and at the same time, applications to entire so-
lar cell devices with extension beyond the mesoscopic
regime are excessively expensive from a computational
point of view, an important function of this mesoscale
approach will be to bridge and mediate between the
pictures at micro- and macroscales in a comprehensive
multi-scale simulation framework.

The review is organized as follows. In Sec. 2
the main physical processes governing the photovoltaic
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device operation in nanostructure-based high-efficiency
solar cells are discussed in order to define the
requirement for corresponding device models. The
semiclassical formulation of such models is then
introduced in Sec. 3, before the general theory and
the numerical implementation of the quantum-kinetic
picture is sketched in Sec. 4. In Sec. 5, which forms the
main body of the paper, a wide range of applications of
the quantum-kinetic theory and simulation framework
is provided, from ultra-thin absorbers to quantum-
well and quantum-dot solar cells in various device
configurations.

2. Physics of nanostructure-based solar cell
device operation

The main physical processes of photovoltaic device
operation are the same at the mesoscale as at the
macroscale: photogeneration, transport and extraction
at carrier-selective contacts in competition with
injection and recombination at finite separation of
contact Fermi levels. However, the complex potential
landscape in nanostructure-based solar cells gives rise
to a number of sub-processes that are not present in
bulk devices, as displayed in Fig. 1 for the band profile
(EC/V: conduction/valence band edge) of a prototype
quantum photovoltaic device with selective contacts for
electrons on the right and holes on the left, respectively.
Regarding the generation and recombination processes
in (a), in addition to transitions between extended
continuum states (1), there are also transitions between
confined states (2) or, in some cases, subband
transitions (3), while radiative recombination proceeds
primarily via the confined nanostructure states below
the host continuum (4). (b) Transport processes to
consider include carrier capture form continuum to
confined states (1), tunneling between localized states
(2), phonon-assisted thermal escape from localized to
current-carrying extended states (3), and field-assisted
direct tunneling escape (4). (c) Electron and hole
extraction and injection processes at majority contacts
under contact Fermi level splitting µn − µp = qVbias

may be severely affected by the actual potential profile
induced by non-ideal band alignment of window and
contact passivation layer components. In practice,
there are also non-radiative recombination channels
associated with nanostructure states, however, the
discussion is restricted here to the radiative limit.

3. The semiclassical standard model of
photovoltaic device operation

While the purpose of this Topical Review is to present
a theoretical treatment of nanostructure photovoltaics
that reaches beyond the semiclassical bulk picture, it is

(c)

Figure 1. Physical processes governing photovoltaic device
operation in prototypical nanostructure solar cell devices: (a)
Radiative generation and recombination: (1) generation in
the continuum, (2) generation in confined states, (3) radiative
subband transition, (4) radiative recombination via confined
states. (b) Transport: (1) carrier capture, (2) tunneling
between confined states, (3) phonon-assisted thermal escape, (4)
escape via field-assisted direct tunneling. (c) Carrier extraction
and injection at contacts under a finite splitting of the chemical
potentials µn,p by a voltage Vbias.

still instructive to quickly review the latter, as it will be
used for validation of the quantum-kinetic treatment
in cases where it is valid, and for comparison in
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order to detect deviations in non-bulk-like situations.
Furthermore, the semiclassical bulk model keeps its
relevance in the context of the multiscale simulation
of extended devices, where it is used to describe the
bulk components. Among the standard approaches,
the two most widely used are considered here, which
are, the global detailed balance picture on which
most limiting efficiency calculations are based, and
the drift-diffusion-Poisson form of the photovoltaic
balance equation, which will both be considered in the
following.

3.1. Global detailed balance characteristics

In the most elementary of the methods, the device
characteristics are obtained based on external radiative
properties only, by equating the extracted charge
current density with the difference of absorbed and
emitted photon fluxes [12],

J(V ) = −q
{

Φabs(φ
↙
0γ)− Φem(V )

}
, (1)

where q is the elementary charge, φ↙0γ is the incident
photon flux and V is the voltage between contacts.
In the global radiative detailed balance limit, the two
quantities are related via their dependence on the
absorptance of the device [12,13],

Φabs(φ
↙
0γ) =

∫
dEγ φ

↙
0γ(Eγ)a(Ω↙, Eγ), (2)

Φem(V ) ≈
∫
dEγ

∫
dΩ a(Ω, Eγ)φ̄bb(Ω, Eγ)

×
{

exp(qV/kBT )− 1
}
, (3)

where Eγ is the photon energy, a is the absorptance
(at angle of incidence Ω↙) – related to the absorption
coefficient α and refractive index n via some optical
model for the light propagation, such as, e.g., Lambert-
Beers law or the Transfer-Matrix Method (TMM) for
coherent wave propagation – and φ̄bb is the black-body
radiation flux for emission into solid angle Ω. In the
above formulation, the model assumes perfect carrier
extraction due to infinite mobility, corresponding to
flat quasi-Fermi levels split by the voltage at the
contacts, ∆µ = qV . The model can be extended to the
case of finite mobility and non-radiative recombination
by replacing in Eq. (3) the absorptance with the
external quantum efficiency [14]. However, there are
limits in the applicability of this reciprocity relation
that stem from the voltage or illumination dependence
of the external quantum efficiency which lead to the
breakdown of the superposition principle [15].

3.2. Semiclassical balance equations with local
Fermi-Golden-Rule rates

In order to capture effects of finite mobility, the
transport of photogenerated or electronically injected

charge carriers needs to be considered. For a detailed
investigation of the impact of a specific nanostructured
device component on the overall device characteristics,
the local charge carrier dynamics has to be included in
the model. In general, this is achieved by combining a
drift-diffusion model for charge transport (upper/lower
sign is for electrons/holes)

Jc(r) =∓ q
{
± ρc(r)µc(r)∇ϕ(r)−Dc(r)∇ρc(r)

}
(c = e, h) (4)

with Fermi-Golden-Rule rates for the local carrier
generation (G) and recombination (R)

G(r) =

∫
dEγ ηgen(Eγ)α(r, Eγ)φγ(r, Eγ), (5)

R(r) = B(r)ρe(r)ρh(r), (6)

B(r) = n−2
i

∫
dEγ α(r, Eγ)φ̃bb(Eγ), (7)

obtained from the local microscopic electronic struc-
ture information, in carrier-specific balance equations
for charge continuity

∓q−1∇ · Jc(r) = G(r)−R(r), (c = e, h) (8)

coupled to the Poisson equation for the electrostatic
potential ϕ,

ε0∇ · {ε(r)∇ϕ(r)} = q {ρe(r)− ρh(r)−Ndop(r)} .
(9)

In the above equations, µ is the mobility, D the
diffusion constant, ρ (ni) the (intrinsic) carrier
density, φγ is the local photon flux due to the
external illumination, ηgen is the fraction of photons

generating electron-hole pairs, φ̃bb[n] is the angle-
integrated black-body flux for isotropic emission into
medium with refractive index n, α is the absorption
coefficient, τ is the carrier lifetime associated with the
recombination process, ε0 and ε are the free space and
relative permittivities, and Ndop ≡ N+

D − N−A is the
density of ionized dopants. Conventionally, the carrier
density is expressed in terms of an effective density of
states N that reflects the electronic structure close to
the band edge, and of the carrier distribution function,
for which it is common to use Boltzmann statistics with
quasi-Fermi level EFc

(c = e, h):

ρc(r) = Nc(r) exp{[±EFc
(r)∓ EB(r)]/kBT} (10)

where upper (lower) sign applies to electrons (holes),
and EB is the band edge energy. Solution of Eqns. (4),
(8)-(10) provides the current-voltage characteristics as
a function of quasi-Fermi levels EFe,h

for electrons and
holes and of the electrostatic potential ϕ. Modified
versions of Expr. (8) have been used in cases with
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vanishing current between absorbers and/or absent
coupling to contact states [16, 17]. Such a hybrid
approach is limited in validity by the assumptions
underlying the drift-diffusion picture, i.e., band-
like transport with completely thermalized carrier
distributions, which does not include any quantum
effects such as confinement, tunneling or ballistic
transport on very short length scales. Moreover, in
most cases, the model used for the electronic structure
relies on the flat band bulk picture, which is not
applicable in nanostructure regions.

4. Non-equilibrium quantum statistical
mechanics formulation of photovoltaic
processes

The challenges of describing photovoltaic device
operation under consideration of quantum effects
are manifold. Firstly, one has to treat an open
quantum system, which in principle requires a
description based on scattering states rather than the
eigenstates provided by the solution of Schrödinger’s
equation for the closed system. Due to the essential
inclusion of light-matter interaction and the sizable
effects of electron-phonon coupling under the standard
condition of room temperature operation, a mixed
state representation is indicated. Among the suitable
theories, the non-equilibrium Greens function (NEGF)
formalism is most versatile and powerful and has
found wide-spread application in the modeling of
nanostructure-based quantum opto-electronic devices
such as photodetectors based on QW [18] and QD
[19], QW lasers [20], quantum cascade lasers [21, 22],
and QW LEDs [23]. In the field of nanostructure
photovoltaics, applications of the NEGF formalism so
far include carbon nanotube photodiodes [24], multi-
QW and QW superlattice solar cells [25–27], nanowire
solar cells [28], QD superlattice solar cells [29, 30],
ultra-thin absorber devices [31, 32], and QW tunnel
junctions for multi-junction solar cells [33].

Powerful and versatile as it is, the NEGF
formalism has its foundations in advanced concepts
of many-body and quantum-field theories which are
not widely used in photovoltaics. For this reason,
while trying to remain self-contained, the discussion
of the general theory is limited here to what is relevant
for the examples in the application section. For a
more detailed and complete presentation of the NEGF
theory of quantum photovoltaic devices, the reader is
referred to Ref. [34].

4.1. Theoretical formalism

In contrast to the semiclassical picture, the quantum-
statistical mechanics description does not aim to match
complex reality by adjusting a range of parameters

of a simplified model. Instead, a simplified physical
universe containing the relevant degrees freedom and
interactions is constructed and subjected to the
external conditions of device operation, from which
the physical device behaviour emerges in its full
complexity. Hence, while the basic structure of the
material and its inherent interactions are modeled
on the basis of microscopic information, the device
characteristics are produced by the basic physical laws
prevailing in the model universe.

4.1.1. Hamiltonian Mathematically, the microscopic
model universe relevant for photovoltaic device simu-
lation is represented by the model Hamiltonian for a
system of interacting electrons, photons and phonons:

Ĥ =Ĥe + Ĥp + Ĥγ + ĤI , (11)

ĤI =Ĥeγ + Ĥep + Ĥpγ , (12)

where ĤI describes the mutual interactions of charge
carriers, photons and phonons. The electronic part
Ĥe = Ĥe0 + Ĥee contains the non-interacting part Ĥe0

and the electron-electron interaction part Ĥee. The
non-interacting term provides the kinetic energy and
contains the potential for the interaction of valence
electrons with the ion cores, and in most practical
implementations includes also the Hartree term of
the Coulomb interaction corresponding to the solution
of Poisson’s equation that considers carrier-carrier
interactions on a mean-field level. Similarly, Ĥp =

Ĥp0 + Ĥpp, where the first term contains the kinetic
energy of the lattice and the second term encodes
the phonon-phonon interaction that is relevant, e.g.,
for anharmonic decay of vibrational modes [35]. The
photon term, on the other hand, contains only the free-
field contribution Hγ0.

In the quantum-statistical mechanics picture used
here, the quantized electronic, vibrational and optical
degrees of freedom are expressed in terms of the
corresponding field operators, namely, the fermion field
operator Ψ̂ for the charge carriers, the quantized vector
potential Â for the transverse photons and the ionic
lattice displacement field Û for the phonons. On
the one hand, the bosonic fields enter directly in the
elements of the interaction Hamiltonian ĤI . The
electron-photon Hamiltonian for minimal coupling and
using Coulomb gauge is given by

Ĥeγ(r, t) =
e

m0
Â(r, t) · p̂, (13)

where p̂ ≡ −i~∇r is the momentum operator. The
electron-phonon term is expressed as

Ĥep(r, t) =
∑
L,κ

Û(L + κ, t) · ∇Vei[r− (L + κ)], (14)
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where Vei denotes the electron-ion potential, L is the
equilibrium lattice vector and κ the basis vector within
the unit cell [38]. Direct interaction of light with the
lattice (Ĥpγ) is not considered here.

4.1.2. Non-equilibrium Green’s functions On the
other hand, the field operators define the single-particle
Green’s functions (GF)‡

G(1, 2) =− i

~
〈Ψ̂(1)Ψ̂†(2)〉C , (electrons) (15)

Dγµν(1, 2) =− i

~
1

µ0

[
〈Âµ(1)Âν(2)〉C

− 〈Âµ(1)〉C〈Âν(2)〉C
]
, (photons) (16)

Dpαβ(1̃, 2̃) =− i

~
〈Ûα(1̃)Ûβ(2̃)〉C , (phonons) (17)

where µ, ν and α, β are cartesian indices and 〈...〉C
denotes the contour-ordered operator average peculiar
to non-equilibrium quantum statistical mechanics [36,
37] for arguments 1 = (r1, t1) with t1 on the Keldysh
contour [37]. The photon GF describes the fluctuations
with respect to the macroscopic average responsible
for spontaneous emission. In the case of the lattice
displacement field, the continuous spatial coordinate r
is replaced by the discrete ion position vectors R =
L + κ ≡ Lκ. The associated four-vector is 1̃ ≡
(L1κ1, t1). The GFs are determined as the solutions
of corresponding Dyson’s equations [20,38,39],∫

C
d3
[
G−1

0 (1, 3)− Σ(1, 3)
]
G(3, 2) = δ(1− 2),

(18)∫
C
d3
[
(
←→
D γ

0)−1(1, 3)−
←→
Π γ(1, 3)

]←→
D γ(3, 2) =

←→
δ (1− 2),

(19)∫
C
d3
[
(Dp

0)−1(1̃, 3̃)−Πp(1̃, 3̃)
]
Dp(3̃, 2̃) = δ(1̃− 2̃),

(20)

where the integration is
∫
C d1 ≡

∫
C dt1

∫
d3r1. The GFs

G0, Dγ0 and Dp0 are the propagators for non-interacting
electrons, photons and phonons, respectively, ↔
denotes transverse degrees of freedom and boldface
expresses tensorial quantities. The electronic self-
energy Σ encodes the renormalization of the charge
carrier GFs due to the interactions with photons and
phonons and other carriers, and enables thus the
description of charge carrier generation, recombination
and relaxation processes. It is responsible for
the appearance of excitonic effects in the carrier
spectrum and leads to band-gap renormalization

‡ The spin of charge carriers is not treated explicitly here - where
required, a factor of two is added to account for summation over
spin, while in general, a spinless representation is assumed.

under high excitation [40]. Charge injection and
extraction at contacts is considered via an additional
boundary self-energy term reflecting the openness of
the system. The photon and phonon self-energy

tensors
←→
Π γ and Πp describe the renormalization of

the optical and vibrational excitation modes due to the
interaction with the electronic system, i.e. absorption
and emission of photons and phonons, leading to
phenomena such as photon recycling or hot carrier
effects and including excitonic signatures in the bosonic
spectra.

4.1.3. Interaction self-energies Formally, the self-
energies in the above equations follow from the
expansion of the Green’s functions in terms of the
perturbation interactions that govern the propagation
of the system on the complex time contour§. In the
case of the electronic GF, this corresponds to the
expansion of the exponential term in

G(r, t; r′, t′) = − i
~

〈
e−

i
~
∫
C
dsĤI(s)Ψ̂(r, t)Ψ̂†(r′, t′)

〉
C
,

(21)

with respect to

ĤI(t) =

∫
d3rΨ̂†(r, t)ĤIΨ̂(r, t), (22)

which allows for the identification of the self-energy
term in

G(1, 2) = G0(1, 2) +

∫
C

d3

∫
C

d4G0(1, 3)Σ(3, 4)G(4, 2).

(23)

To first order in the interaction, finite contributions
are obtained only for fields with macroscopic average,
as in the case of the coupling to classical external
illumination, which provides the instantaneous self-
energy for stimulated processes [42]:

Σδeγ(1) =
e

m0
〈Â(1)〉C · p̂(1) ≡ e

m0
Ā(1) · p̂(1), (24)

where Ā is the classical vector potential of the external
illumination. As this singular self-energy induces off-
diagonal terms with respect to band indices, a band
decoupling procedure is applied in order to arrive at a
diagonal self-energy [42,43]: ‖

Σα(1, 1′) =Σδ(1)Gα(1, 1′)Σδ(1′), α = R,A,≶, (25)

§ Alternatively, they can be derived using functional derivatives,
as, e.g., in Ref. [41]
‖ The GF in (25) do not consider the effects of interband
coupling; however, as the occupation of electrons in the valence
band and of holes in the conduction band are only marginally
modified under the standard conditions of photovoltaic device
operation (i.e., low illumination intensity), it is usually safe to
use the full GFs.
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where GF and self-energy are associated with different
bands coupled by the singular interaction terms.
To second order in the interaction, on the level of
the self-consistent Born approximation (SCBA), the
self-energies for electron-photon and electron-phonon
interaction are obtained in the following general form
corresponding to the Fock terms of the diagrammatic
expansion:

Σeγ(1, 2) =i~µ0

( e

m0

)2∑
α,β

p̂α(1, 1′)G(1, 2)

× p̂β(2)Dγαβ(2, 1′)|1′=1, (26)

for the electron-photon self-energy [20, 40] , where µ0

is the vacuum permeability and

p̂α(1, 1′) ≡
{
p̂α(1)− p̂α(1′)

}
/2, (27)

and

Σep(1, 2) =i~
∑
L,κ

∑
L′,κ′

∑
α,β

Fα (r1 − Lκ)Fβ (r2 − L′κ′)

×Dpαβ(Lκ, t1; L′κ′, t2)G(1, 2), (28)

for the electron-phonon self-energy [38, 44], with F =
∇Vei. Similarly, the random phase approximation of
the photon self-energy is obtained in terms of electronic
Green’s functions and momentum operator elements as
follows [20,40]:¶

Παβ(1, 2) =− 2i~µ0

( e

m0

)2

p̂α(1, 1′)G(1, 2)

× p̂β(2)G(2, 1′)|1′=1, (29)

A discussion of the phonon self-energy as used for
the description of anharmonic decay can be found in
Ref. [35].

4.1.4. Contacts It was shown in Sec. 2 that extraction
and injection of charge carriers at (selective) contacts
count among the fundamental processes of photovoltaic
device operation. In order to describe these processes
in the present microscopic picture, the treatment of
contacts in the NEGF theory of quantum transport
is adopted [45–47]. There, contacts are described as
reservoirs with an equilibrium population of carriers
characterized by a fixed chemical potential. In the
treatment of the complete system consisting of device
region and reservoirs, the effect of the latter is
condensed into respective self-energies that describe
the renormalization of the device state and the lifetime
broadening induced by coupling to the contacts. In this
way, the physical extension of the contact region that
needs to be consider explicitly can be reduced to the

¶ There is a factor of two for spin.

zones of actual coupling. Conventionally, the resulting
self-energy is expressed as

ΣB = τ †gBτ, (30)

where τ encodes the elements of the coupling
Hamiltonian between contact and device, and gB is the
surface Green’s function of the semi-infinite reservoir.
The problem of the coupling to reservoirs then reduces
to the calculation of the contact GF gB , which can
be achieved via surface GF methods using decimation
techniques [48, 49], conformal maps [50] or complex
band methods [51–54]. Similar surface GF approaches
can also be used for photons [41, 55] or phonons
[35, 56, 57] in systems that are open in the optical or
vibrational sense, respectively.

4.1.5. Steady-state device characteristics The non-
equilibrium Green’s functions provide any kind of
physical information on the electronic, optical and
vibrational properties of the system that can be
expressed via single particle operators. However,
before any characteristics can be computed, the
Green’s functions first have to be determined in
the physical space of real time arguments. For
this purpose, equations (18) - (20) and the self-
energy expressions are reformulated in terms of
contour-ordered quantities via Green’s functions that
are labeled according to the sequence of their
time arguments on the contour, which introduces
the labels ”<” and ”>” for components that are
ordered chronologically or anti-chronologically, but
with different sign of the imaginary part of the time
arguments, in addition to chronological and anti-
chronological components (”Keldysh formalism”) [37].
The latter are usually replaced by the more familiar
retarded (”R”) and advanced (”A”) components. The
transformation to real-time functions and integrations
can be facilitated by following the so-called Langreth
rules [58].

For investigations focused on steady-state oper-
ation, the time arguments are replaced by the differ-
ence t−t′, which is then Fourier-transformed to energy
space. In the case of the electron density, for instance,
this yields

n(r, t) = − lim
r′→r

lim
t′→t+

i~ tr{G<(r, t; r′, t′)} (31)

→ n(r) = − lim
r′→r

lim
t′→t+

i~ tr{G<(r, r′; t− t′)} (32)

= − lim
r′→r

lim
t′→t+

i

∫
dE

2π
e

i
~E(t−t′)tr{G<(r, r′;E)}

(33)

= −i
∫
dE

2π
tr{G<(r, r;E)}, (34)

where the trace is over spin, orbital indices etc.
Similarly, the steady-state electron current acquires the
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form

je(r) = − lim
r′→r

~
2m0

(
∇r −∇r′

) ∫ dE

2π
tr{G<(r, r′;E)}.

(35)
Expressions (34) and (35) also define spectral densities
and currents in terms of the Green’s functions.
Another spectral quantity of interest is the local
density of states (LDOS) determined by the retarded
component via

D(r, E) = − 1

π
tr{=GR(r, r;E)}. (36)

The microscopic counterpart of the net (volume) rate
term in the steady-state continuity equation for charge
carriers - Eq. (8) - which is at the heart of the
semiclassical theory of photovoltaic device operation is
obtained upon application of the divergence operator
on (35):

Rel
tot(r) = −

∫
dE

2π~

∫
d3r′ tr

[
ΣR(r, r′;E)G<(r′, r;E)

+ Σ<(r, r′;E)GA(r′, r;E)−GR(r, r′;E)Σ<(r′, r;E)

−G<(r, r′;E)ΣA(r′, r;E)
]
. (37)

The integrand defines again the net energy-resolved
local scattering rate. If the energy range of integration
is restricted, only processes that connect energies
within that window cancel upon integration, while
processes with initial or final energies outside the
window provide finite contributions to the net rate.
This is the case for instance in optical interband
transitions, if the rate is evaluated for a specific
carrier species. The steady-state Green’s function
components in the above expressions are obtained
from the corresponding Dyson and Keldysh equations
resulting from the transformed expressions (18)-(20):

GR(A)(r,r′;E) = G
R(A)
0 (r, r′;E)

+

∫
d3r1

∫
d3r2

[
G
R(A)
0 (r, r1;E)

× ΣR(A)(r1, r2;E)GR(A)(r2, r
′;E)

]
, (38)

G≶(r, r′;E) =

∫
d3r1

∫
d3r2

[
GR(r, r1;E)

× Σ≶(r1, r2;E)GA(r2, r
′;E)

]
. (39)

The representation in energy space of the contact
or boundary self-energy components in the above
equations reflect the density of states and occupation
of the reservoirs:

ΣB,<(·;E) =if(µB, E)ΓB(·;E), (40)

ΣB,>(·;E) =− i[1− f(µB, E)]ΓB(·;E), (41)

ΓB(·;E) ≡i
[
ΣB,R(·;E)− ΣB,A(·;E)

]
(42)

=i
[
ΣB,>(·;E)− ΣB,<(·;E)

]
, (43)

where f(µB, E) is the Fermi-Dirac distribution for
chemical potential µB, and the contact broadening
function ΓB is a measure for the life-time reduction
due to coupling to the contact. The real part of the
retarded self-energy, on the other hand, describes an
energy shift induced in the device states. These two
effects - energy shift and broadening - are characteristic
for any self-energy. The interaction self-energies in
equations (39) are

Σ≶(coh)
eγ (r, r′;E) =

( e

m0

)2∑
µν

Aµ(r, Eγ)pµ(r)

×G≶(r, r′;E ∓ Eγ)A∗ν(r′;Eγ)pν∗(r′), (44)

for the coherent coupling to the incident radiation at
energy Eγ , and

Σ≶(inc)
eγ (r, r′;E) = i~µ0

( e

m0

)2∑
µν

lim
r′′→r

1

2

{
p̂µ(r)

− p̂µ(r′′)
}

lim
r′′′→r′

p̂ν(r′′′)

∫
dE′

2π~

[
Dγ,≶µν (r′′, r′′′;E′)

×G≶(r, r′;E − E′)
]

(45)

for incoherent coupling to electromagnetic field
fluctuations. Similarly, the self-energy for coupling to
phonons reads

Σ≶
ep(r, r

′;E) = i~
∑
L,κ

∑
L′,κ′

∑
α,β

Fα (r− Lκ)

×Fβ (r′ − L′κ′)

∫
dE′

2π~

[
Dp,≶βα (Lκ,L′κ′;E′)

×G≶(r, r′;E − E′)
]
. (46)

For the weak coupling considered here, the renormal-
ization of the quasiparticle energies due to the real
part of the retarded self-energy component can be ne-
glected, and the retarded component can be approxi-
mated by ΣR = 1

2 (Σ> − Σ<).
Expressions (45) and (46) relate the electronic

quantities to optical and vibrational properties by ex-
plicit dependence on the respective Green’s functions.
While this relation is given here in its most general
form, its is often possible to use simplified treatments
for either the optical or the vibrational properties, e.g.,
in cases where these degrees of freedom behave bulk-
like and/or remain at equilibrium. This is commonly
the case for the phonon properties, which will thus
not be treated beyond the level of an equilibrium bulk
propagator. For the photons, on the other hand, ex-
plicit consideration of photon confinement effects is rel-
evant for any kind of optically thin solar cell device,
which affects most of the high-efficiency architectures
discussed here. Hence, a first step in the direction
of a unified quantum theory of photovoltaics at the
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nanoscale consists in the consideration of electrons and
photons with the same degree of rigor.

In effect, similar expressions for physical charac-
teristics can be derived for photonic quantities in terms
of photon GF Dγ , e.g., for the LDOS

Dγ(r;E) = − 2E

π~2c2
tr{=Dγ,R(r, r;E)}, (47)

the Poynting vector (α ∈ {x, y, z})

〈Sα(r)〉 =

∫ ∞
0

dEE
∑
β 6=α

lim
r′→r

[
∇βr′{D

γ,>
βα (r, r′;E)

+Dγ,<βα (r, r′;E)−Dγ,>αβ (r′, r;E)−Dγ,<αβ (r′, r;E)}

− ∇αr′{D
γ,>
ββ (r, r′;E) +Dγ,<ββ (r, r′;E)

−Dγ,>ββ (r′, r;E)−Dγ,<ββ (r′, r;E)}
]
/(4π~) (48)

and the net radiative rate

Ropt
tot =

∫
dE

2π~
∑
µ,ν

∫
d3r

∫
d3r′

[
Dγ,<µν (r, r′;E)

×Πγ,>
νµ (r′, r;E)−Dγ,>µν (r, r′;E)Πγ,<

νµ (r′, r;E)
]
. (49)

Again, the GF in the above expressions are obtained
from the steady-state version of Eq. (19): For the
dyadic photon GF the integral form of the Dyson
equation becomes (summation over repeated indices)

Dγ,Rµν (r, r′;E) = Dγ,R0,µν(r, r′;E)

+

∫
d3r1

∫
d3r2

[
Dγ,R0,µα(r, r1;E)

×Πγ,R
αβ (r1, r2;E)Dγ,Rβν (r2, r

′;E)
]
, (50)

and the kinetic equation for the correlation functions
reads

Dγ,≶µν (r, r′;E) =

∫
d3r1

∫
d3r2Dγ,Rµα (r, r1;E)

×
[
Π
γ,≶
0,αβ(r1, r2;E) + Π

γ,≶
αβ (r1, r2;E)

]
Dγ,Aβν (r2, r

′;E).

(51)

The steady-state form of the photon self-energy energy
terms are:

Π
γ,≶
αβ (r, r′;E) = i~µ0

( e

m0

)2

lim
r′′→r

1

2
{p̂α(r)− p̂α(r′′)}

× lim
r′′′→r′

p̂β(r′′′)

∫
dE′

π~
G≶(r, r′;E′)G≷(r′′′, r′′;E′ − E)

(52)

for the influence of absorption and emission in the
material, and

Π
γ,≶
0,µν(r, r′;E) =

∫
d3r1

∫
d3r2

∑
αβ

[{
Dγ,R0,µα

}−1
(r, r1;E)

×Dγ,≶0,αβ(r1, r2;E)
{
Dγ,A0,βν

}−1
(r2, r

′;E)
]

(53)

for the self-energy components related to the solution
of the homogeneous problem, i.e., to incident
fluctuations that are independent from the state of the
absorber [59–61]+.

The formalism as presented here is incomplete
insofar as it contains only the self-energies for
interactions of charge carriers with photons and
phonons. Many more interactions have been
studied in the literature on NEGF, such as ionized
impurity scattering and alloy-disorder scattering [44],
or electron-electron interaction [20, 40, 41, 62, 63].
However, these terms do either not change the
qualitative picture of photovoltaic device operation,
as in the case of the former two effects, or cannot be
handled numerically without severe simplification.

4.2. Numerical implementation

4.2.1. General algorithm The central task of any
solar cell device simulation based on NEGF is the
numerical evaluation of the Dyson and Keldysh
equations (38)-(39) and (50)-(51) for the electron
and photon Green’s functions and of the self-energy
terms such as (45), (46) and (52) entering these
equations. This general solution procedure is sketched
in Fig. 2 for the electronic part. The global
parameters that remain constant concern the electronic
structure of the constituent materials, including doping
profiles, and the device geometry. The external
conditions for a specific simulation run are given by
the bias voltage, i.e., the separation of the chemical
potentials at the contacts which controls the level
of carrier injection, and the external illumination
spectrum. The computation of the GF then proceeds
in two nested self-consistency loops. In the outer
loop, the electrostatic potential entering the electronic
Hamiltonian is obtained by solving Poisson’s equation
with the electronic density provided by the GF
expression (34). After a suitable choice of an initial
potential to set the band profile, the contact self-
energy components can be determined. Since they
depend on the electrostatic potential, they have to be
updated after each outer iteration step. The second
self-consistency loop represents the iterative solution of
the equations for Green’s functions and self-energies.
It should be noted at this point that this iteration
is a consequence of the choice of a self-consistent
self-energy and alternative conserving schemes exist
[64–67]. However, the self-consistent approach not
only ensures current conservation after convergence,
but in addition provides an insightful way to monitor
the evolution of the system towards the steady state
[68]. In Fig. 2, only the electronic part is shown,

+ Please note that the quantities in (53) are not the standard
inverse of the non-interacting photon GF, as integration of their
product yields the transverse delta function.
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Figure 2. Computational scheme for the evaluation of device
characteristics for a given device configuration and operating
point determined by external illumination and bias voltage. The
general algorithm consists of an outer loop for the self-consistent
evaluation of the charge density by coupling to Poisson’s
equation, and the inner self-consistency iteration of Green’s
functions and interaction self-energies. Physical quantities such
as currents and rates can be obtained in a post-processing step
after convergence is reached. Reproduced with permission from
Ref. [68].

as with the current-voltage characteristics it provides
the key quantities to assess the solar cell device
performance. However, if processes such as photon
recycling become important, the renormalization of the
photon propagator due to occupation of photon modes
as a result of spontaneous emission needs to be included
in the inner self-consistency iteration via solution of
Eqs. (50) and (51) for a photon self-energy (52) that
is updated with the actual electronic GF. Once the
self-consistency iteration has converged, the physical
quantities of interest can all be computed from the GF
in a post-processing step using the expressions of the
previous section.

4.2.2. Choice of basis In Sec. 4.1, the representation
was kept in real space to be as general as possible.
However, numerical solution of the NEGF problem
requires the application of a discretization scheme for
functions and operators, in order to turn the integro-
differential equations into a system that can be solved
by optimized linear algebra methods. Conventionally,
this is either achieved by application of a real
space scheme such as the finite-difference or finite
element methods, or by a suitable choice of a finite-
size basis such as provided by localized atomic-like

orbitals or Wannier functions. The suitability of
a given approach strongly depends on the spatial
extension and dimensionality of the system, and on
the requirements in terms of interactions and necessary
phase-space resolution. As a general feature of
optoelectronic applications, electronic structure has
to be considered on the level of a multiband model,
as interband processes are essential for the device
operation. Furthermore, the solar spectrum potentially
enables optical transitions in a energy range from 0 eV
to more than 4 eV. For most conventional absorber
materials with band gaps around the optimum value
predicted by the Shockley-Queisser limit, this means
that a large fraction of the Brillouin zone contributes
to carrier generation, which favors full-zone models
such as tight-binding over k-point expansions such as
k · p methods. In the presence of complex interfaces
or materials with strong compositional or structural
disorder, atomistic models are indispensable. Last
but not least, microscopic details beyond the envelope
function approximation appear in the scattering self-
energies, such as dipole matrix elements or electron-
phonon coupling constants, which ideally should be
evaluated in a consistent fashion.

4.2.3. Numerical challenges The NEGF formalism,
while figuring among the most advanced and powerful
methods for optoelectronic device simulation, provides
its unique insight at the expense of formidable
computational cost. The main factors for the
immense requirement of computational resources are,
on the one hand, the large number and domain of
arguments to be resolved - two spatial arguments
plus energy - owing to the microscopic nature of the
approach, and, on the other hand, the complexity
of the self-consistent solution procedure. While the
size of the GF is demanding in terms of memory,
the coupling in energy, and, in the case of planar
structures, transverse momentum which originates in
the self-consistency iteration prevents straightforward
partition of the problem for solution on large-scale
distributed memory supercomputers. In effect, the
efficient parallelization of the NEGF approach to the
simulation of nano-electronic devices featuring inelastic
interactions is under active investigation [69]. In
view of the slow convergence of the self-consistency
iteration process in the case of strong interactions
or the presence of localized states [68], massive
parallelization is imperative to enable predictive
simulations of realistically sized structures under
full spectrum illumination. On the other hand,
current implementations of the NEGF formalism for
photovoltaic devices limit its applications to structures
of mesoscopic spatial extension and with simplified
electronic structure models.
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4.2.4. Common pitfalls Due to to the formal and nu-
merical complexity and the computational expense of
the approach, a variety of approximations, simplifica-
tions and coarse-graining methods are commonly used
in implementations of the NEGF formalism. Here, we
discuss potential pitfalls arising from three different
origins: numerical resolution, parameter ranges, and
non-locality. A useful discussion of related issues can
also be found in Ref. [70].

Numerical resolution refers to the step size in
the spatial, momentum and energy grids. Insufficient
refinement in those meshes can lead to incomplete
resolution of local features in real, momentum and
energy spaces, such as the resonances arising due
to localization induced by heterostructure potentials
or quantized interactions. Failure to resolve such
sharp features can lead to large errors in the physical
properties computed based on the spectral quantities,
and to problems with the convergence of the self-
consistency iteration. Most importantly, it can result
in a violation of current conservation, which is one
of the most stringent consistency tests for any NEGF
implementation.

Not only the resolution of the grids is important,
but also the extent of the meshes. Both energy and
momentum meshes need to be chosen large enough
as to contain all states and associated transitions of
interest. For instance, the momentum range required
to describe heavy holes in GaAs within a given energy
window around the valence band maximum is much
larger than that required for electrons in the same
window around the conduction band minimum.

While the above issues are present in any
simulation based on (steady-state) NEGF, there is an
additional complexity arising in simulations of systems
with transitions between (sub-)bands, which has to
do with the consideration of non-locality. As soon
as objects depend on off-diagonal GF elements, such
as in the case of electron-photon interaction self-
energies and interband polarization functions, it is
no longer safe to neglect non-locality, i.e., a larger
number of off-diagonal elements of the GF need to be
evaluated. While in the case of intraband scattering,
e.g., with optical phonons, the underestimation of
coupling strength due to a diagonal approximation can
be mitigated by a simple rescaling of the self-energy,
this is not possible in the case of interband scattering,
as the spectral shape of the joint density of states is
very sensitive to the non-locality range [42].

NEGF implementations should therefore always
be tested against established semiclassical approaches
for situations where the latter are valid, which in
general is the case for bulk-like media at low-field
conditions. For the simulation of solar cell devices,
it is often useful to compute the absorption coefficient

and the absorptance based on the GF and use this
information together with the photon flux to asses
the correctness of the photocurrent and the radiative
dark current obtained by NEGF, based on the relations
presented in Sec. 3.1.

5. Numerical results for selected applications

5.1. Ultra-thin absorbers

While epitaxially grown solar cells made of high-
quality III-V semiconductor materials reach very
high conversion efficiencies, the fabrication process is
expensive and energy intensive, and raw materials
are not in general earth-abundant. One approach to
mitigate these problems consists in a severe reduction
of material usage by strongly limiting the absorber
thickness and compensating for the reduced absorption
length via nanophotonic light trapping that enables
coupling to resonant waveguide modes. Indeed, almost
complete absorption of the incident light could be
shown both theoretically [71, 72] and experimentally
[73–75] for absorber thicknesses in the far sub-
wavelength regime, which sparked a growing activity
in ultra-thin solar cell development [76–79]. While the
optics of these devices requires special consideration
due to the need for extreme absorption enhancement,
the ultra-thin solar cells are in general treated as
bulk-like from an electronic point of view. However,
for active region extension of far below 100 nm, any
variation in the band profile away from flat band
conditions represents a strong deviation from the bulk
situation. For an absorber thickness of 60 nm and
doped regions of 20 nm, the built-in field sustained
by the (fully ionized) doping density of 1018 cm−3

ranges from around 50 kV/cm at open circuit voltage
to more than 100 kV/cm at short circuit conditions.
Furthermore, contact regions span a significant fraction
of the whole device. The question therefore arises
whether these solar cells indeed behave like ordinary
bulk devices.

To shed light on the photovoltaic characteristics
at mesoscale absorber dimensions, a prototypical ultra-
thin solar cell was modeled as a GaAs p-i-n device with
carrier selective contacts formed by electron and hole
blocking layers (EBL/HBL) with band offsets ∆EC/V,
as schematically depicted in Fig. 3(a) [80]. Since this
thin film device is prototypical for a planar architecture
with quasi-infinite in-plane dimensions, some space is
dedicated in the following to reformulate the NEGF
approach in a representation that is suitable for quasi-
1D slab systems.

In layer structures with homogeneous transverse
dimensions, the steady-state equations for the Green’s
functions can be simplified by using a Fourier
transform with respect to transverse coordinates. For
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Figure 3. Layer structure and band profile of an ultra-thin
GaAs solar cell with electron/hole blocking layers (EBL/HBL)
and a gold back reflector. Due to the reduced thickness, the
intrinsic absorber region is subjected to very strong built-in
electrical fields. The monochromatic illumination is incident
from the left assuming perfect in-coupling. The gold mirror is
considered explicitly only in the optical simulation. Adapted
with permission from Ref. [80].

the charge carriers, the resulting slab representation
reads

G(r, r′;E) =A−1
∑
k‖

G(k‖, z, z
′, E)eik‖·(r‖−r′‖), (54)

where k‖ is the transverse quasi-momentum and A
is the slab cross section area. This representation is
appropriate here since we consider only the case of
quasi-1D planar device architectures. For the photon
GF components, the corresponding steady-state slab
representation is

Dγµν(r, r′;E) =

∫
d2q‖

(2π)2
Dγµν(q‖, z, z

′, E)eiq‖·(r‖−r′‖).

(55)

In the evaluation of physical quantities, integration
over transverse momentum needs to be performed,
e.g., for the carrier density (upper/lower sign for
electrons/holes: s = c/v)

ρs(z) = ∓iA−1
∑
k‖

∫
dE

2π
G≶
s (k‖, z, z, E), (56)

or the charge carrier current:

js(z) =∓ lim
z′→z

e~
m0

(
∂z − ∂z′

)
×A−1

∑
k‖

∫
dE

2π
G≶
s (k‖, z, z

′, E). (57)

In a simple decoupled-band model of the absorber
material, the self-energy expression associated with the
coherent generation of electrons in the conduction band
via transitions mediated by photons of energy Eγ reads
(c/v: conduction/valence band) [42]

Σ<(gen)
eγ,c (k‖, z, z

′, E) =
( e

m0

)2∑
µ

pµcv(z)

× pµ∗cv (z′)G<v (k‖, z, z
′, E − Eγ)

×
∫

d2q‖

(2π)2
Aµ(q‖, z, Eγ)A∗µ(q‖, z

′, Eγ), (58)

where pµcv, µ ∈ {x, y, z} are interband momentum
matrix elements, and A is the (modal) vector potential,
with q‖ denoting the in-plane photon momentum.
A similar expression exists for the self-energy of
generation of holes in the valence band, with ”<” and
”c” replaced by ”>” and ”v”, and an energy argument
E + Eγ in the GF. The self-energy encoding radiative
recombination of electrons in the conduction band due
to the incoherent coupling to field fluctuations acquires
the form [42]

Σ>(rec)
eγ,c (k‖, z, z

′, E) =
( e

m0

)2∑
µ,ν

pµcv(z)p
ν∗
cv (z′)

×
∫
dEγ

[
G>v (k‖, z, z

′, E − Eγ)

×
∫

d2q‖

(2π)2
i~µ0Dγ,>µν (q‖, z, z

′, Eγ)
]
. (59)

Again, a corresponding in-scattering self-energy for the
recombination of holes in the valence band is obtained
by the above replacements. If the influence of resonator
modes can be neglected, it is common to adopt the
approximation of equilibrium free field modes, which
amounts to using∫

d2q‖

(2π)2
Dγ,>0,µν(q‖, z, z

′, Eγ) = − in0Eγ
3π~c0

δµν (60)

in (59). The electron-phonon scattering self-energies
are used in the form (s = c, v)

Σ≶
ep,s(k‖,z, z

′, E) =
1

V

∑
Λ,Q

|Uλ,k‖−Q‖ |
2e−iQz(z−z′)

×
[
NΛQG

≶
s (Q‖, z, z

′, E ∓ ~ΩΛQ)

+ (NΛQ + 1)G≶
s (Q‖, z, z

′, E ± ~ΩΛQ)
]
,

(61)

where the propagator of the non-interacting equilib-
rium phonon mode (Λ,Q) for polarization Λ and wave
vector Q was introduced in (46), with phonon mode oc-
cupation number given by the Bose-Einstein distribu-
tion NΛQ = (e~ΩΛQ/kBT −1)−1. This is a valid approx-
imation in the case where the vibrational properties
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are not drastically modified with respect to the equi-
librium bulk properties, as in the planar architectures
considered here. In the case of optical phonons, the
spectrum can be approximated by a single character-
istic frequency Ωop. For polar materials, the screened
Fröhlich coupling is used [81]

|UΛ,Q|2 =
βQ2

(Q2 +Q2
0)2

, β =
e2~Ωop

2ε0

(
1

ε∞
− 1

ε

)
,

(62)
where ε is the static dielectric constant and ε∞ the
high frequency dielectric constant. Static screening
is introduced via the inverse screening length Q0, for
which we take the inverse Debye screening length [82],

Q0 =

(
ρse

2

εε0kBT

)1/2

, (63)

where ρs is the carrier density. For acoustic phonons,
deformation potential scattering is assumed, which
amounts to the coupling

|UΛ,Q|2 =
D2

ac~Q
2ρMcs

, (64)

where Dac is the deformation potential constant, ρM is
the semiconductor density and cs is the speed of sound.
Furthermore, for low energy (elastic) scattering and
high temperatures, the expression for the equilibrium
phonon propagator can be simplified using NΛQ ≈
NΛQ + 1 ≈ kBT/(~ΩΛQ) ≈ kBT/(~cQ). Finally,
diagonal coupling is assumed in real space.

The components of the photon self-energy describ-
ing the renormalization of the photon GF due to inter-
action with the electronic system in terms of interband
transitions become

Πγ,≶
µν (q‖, z, z

′, Eγ) =µ0

( e

m0

)2

pµ∗cv (z)pνcv(z
′)

× P≶
cv(q‖, z, z

′, Eγ) (65)

with the interband polarization function (including a
factor of two for the summation over spin)

P≶
cv(q‖, z, z

′, Eγ) = − i~
A
∑
k‖

∫
dE

π~

[
G≶
c (k‖, z, z

′, E)

×G≷
v (k‖ − q‖, z

′, z, E − Eγ)
]
. (66)

The self-energy components related to incident fluc-
tuations that are independent from the state of the
absorber are given by

Π
γ,≶
0,µν(q‖, z, z

′, E) =

∫
dz1

∫
dz2

{
[Dγ,R0 ]−1

µα(q‖, z, z1, E)

×Dγ,≶0,αβ(q‖, z1, z2, E)[Dγ,A0 ]−1
βν (q‖, z2, z

′, E)
}
. (67)

In the NEGF picture, the absorption coefficient as
derived from the net absorption rate can be expressed
in terms of the photon self-energy as follows: [83]

αµ(q‖, z, Eγ) ≈ ~c0
2nr(q‖, z, Eγ)Eγ

×
∫
dz′Re

[
iΠ̂µµ(q‖, z

′, z, Eγ)
]
. (68)

In order to reproduce the bulk absorption coefficient
at flat band conditions, it is essential to consider the
non-locality of the electronic states in the derivation
of (68), i.e., the off-diagonal matrix elements (z 6= z′)
of the charge carrier Green’s function in the interband
polarization function (66) [42]. In terms of a classical
incident radiation field and the photon self-energy,
the absorptance for a given polarization of a slab of
thickness d = zd − z0 acquires the form [42]

aµ(q‖, zd, Eγ) =
i

~µ0
Φ−1
µ (q‖, z0, Eγ)

∫ zd

z0

dz

×
∫ zd

z0

dz′
[
Aµ(q‖, z, Eγ)A∗µ(q‖, z

′, Eγ)

×Π>
µµ(q‖, z

′, z, Eγ)
]
, (69)

where Φ is the modal photon flux (units: s−1). In
terms of the photon GF, the absorptance is given by

aµν(q‖, Eγ) =−
∫
dz

∫
dz′

[
D̂γv,µν(q‖, z, z

′, Eγ)

× Π̂νµ(q‖, z
′, z, Eγ)

]
, (70)

where D̂v is the spectral function of vacuum-induced
incident fluctuations [61]. Finally, the local volume
emission rate of light derives from the radiative
recombination rate in the following modal form [84]:

rµ(q‖, z, Eγ) =
∑
ν

∫
dz′
[
(2π~)−1Dγ,>µν (q‖, z, z

′, Eγ)

×Π<
νµ(q‖, z

′, z, Eγ)
]
. (71)

For the evaluation of luminescence, the propagation of
light inside the cell is required. This information is
encoded in the NEGF version of the Poynting vector
component Sz(z) =

∫
dEγ Sz(z, Eγ) for the energy

flux normal to the slab surface, which in terms of the
photon Green’s functions is given by [60]

Sz(z, Eγ) =
Eγ
2π~

∫
d2q‖

(2π)2
sz(q‖, z, Eγ), (72)

sz(q‖, z, Eγ) =− lim
z′→z

∂z′Re
∑
µ=x,y

[
Dγ,>µµ (q‖, z, z

′, Eγ)

+Dγ,<µµ (q‖, z, z
′, Eγ)

]
. (73)
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The spectral rate of photon emission normal to the left
surface (at z = z0) into modes coupling to normally
incident light is then provided by

R⊥,Poynt
em (Eγ) = −sz(0, z0, Eγ)/(2π~) (74)

with the modal Poynting vector computed directly
from the photon Green’s functions via (73).

NEGF characteristics of ultrathin absorber de-
vices are evaluated for a two-band effective mass
Hamiltonian (see Ref. [32] for details on material pa-
rameters and discretization) and compared to current-
voltage curves obtained from the semi-classical drift-
diffusion-Poisson model under consideration of identi-
cal electronic structure for the bulk materials. As can
be seen in Fig. 4 for the case of perfectly selective con-
tacts (∆EC,V → ∞), discrepancies between the pre-
dictions of the two pictures are present both in the
dark and under monochromatic illumination with pho-
tons of energy close to the band gap (Eγ = 1.44 eV).
The voltage dependence of the photocurrent and the
increase in dark saturation current in the NEGF simu-
lation can be traced back to the field dependence of ab-
sorption and emission characteristics: Fig. 5(a) shows
the sizable deviation of the NEGF absorption coeffi-
cient and emitted photon flux evaluated at the center
of the intrinsic region from the corresponding quanti-
ties based on the flat band bulk model and the gener-
alized Kirchhoff law [85]. The strong variation of the
electronic structure with the operating point eventually
leads to the breakdown of the photovoltaic reciprocity
relation [14] between external photovoltaic quantum

dark current 

current under monochromatic 

illumination (                   eV)

Figure 4. Comparison of NEGF (dashed line with full
symbols) and drift-diffusion (full line) characteristics under
monochromatic illumination with photon energy close to the
band gap (Eγ = 1.44 eV) reveals discrepancies in both dark
and photocurrents. Use of the rates as derived from NEGF
within the drift-diffusion picture of transport reproduces the full
NEGF characteristics, which points at band-like transport with
unit photocarrier extraction efficiency. Adapted with permission
from Ref. [32].

efficiency - or, in the case of the radiative limit, the
absorptance - and the photon flux emitted from the
surface of the solar cell. Figure 5(b) displays the ab-
sorptance of normally incident light (right axis) as well
as the photon flux emitted normal to the left surface
close to the maximum power voltage. The absorptance
aNEGF computed based on the full NEGF treatment
(Eq. (70), [42]) is validated with a transfer-matrix
method (aTMM). Application of the generalized Kirch-
hoff law [13] reproduces the emission spectrum, if the
bias dependence of the absorptance is considered, while
the generalized Kirchhoff spectrum produced based on
the absorptance at zero bias is strongly broadened and
red-shifted as compared to the NEGF spectrum. Due
to the consideration of reabsorption in the NEGF treat-
ment of light propagation inside the cell, the emission
computed from the total radiative recombination rate
(dash-dotted line) exceeds the emission at the left sur-
face as evaluated from the NEGF-based Poynting vec-
tor using Expr. (74) [15].

However, field effects alone cannot explain the
entire discrepancy between the semiclassical bulk
characteristics and the NEGF result: even if fields are
considered in the absorption coefficient via the use of
Airy functions [32], the level of dark- and photocurrent
generation is different in the two cases. Spatial
resolution of generation and recombination reveals a
sizable impact of contact regions [80], as displayed
in Fig. 6. In the configuration corresponding to
perfectly carrier selective contacts (∆EC,V → ∞), the
photocurrent is perfectly rectified, which is shown in
the spectral current flow in Fig. 6(a). However, infinite
barriers cannot be realized in practice. On the other
hand, complete absence of blocking layers causes the
appearance of dark and photocurrent leakage through
minority carrier contacts (positive current component
in the energy range above the top of the band edge
at the p-contact), which strongly reduces the open
circuit voltage, as shown in Fig. 6(b). Introduction
of realistic blocking layers with suitable band offsets,
such as Al40Ga60As for the EBL and In49Ga51P for
the HBL, with both ∆EC and ∆EV on the order of
350 meV, successfully suppresses the leakage current,
recovering the ideal VOC to a large extent, which can
also be seen in Fig. 6(b). However, nonzero barriers at
majority carrier contacts induce carrier quantization
in the absorber and non-bulk-like extraction at the
contacts. More dramatically, the finite-height barriers
modify the density of states close to the contacts,
which results in a dramatic reduction of the short
circuit current due to suppression of absorption in
these non-classical regions and, in consequence, of the
absorptance of the entire device at photon energies
close to the band gap as compared to the device with
open contacts [Fig. 6(c)].
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(a) (b)

Figure 5. (a) The effects of the strong built-in fields modify both the local values of the absorption coefficient and the emitted
photon flux with respect to the corresponding flat band bulk (FBB) properties, where the emission φGP is evaluated using the
generalized Planck law. Typical field effects include the appearance of sub-gap tails and oscillations at higher energies in the
absorption coefficient, which results in a pronounced broadening and red-shift of the emission spectra. Adapted with permission
from Ref. [85]. (b) The field dependence of local properties propagates to a bias dependence of the global absorptance and normal
emission at the cell surface. The relation of the two quantities obeys the generalized Kirchhoff law only if the bias dependence is
considered. The NEGF absorptance aNEGF derived in terms of the photon GF agrees with the absorptance aTMM computed using
the transfer-matrix method. Since reabsorption of internally emitted light is included in the NEGF treatment of light propagation,
the normally emitted photon flux is lower than the total integrated rate of emission towards the left surface (dash-dotted line).
Adapted with permission from Ref. [15].

(a)

(b)

(c)

Figure 6. (color online) Impact of contact configuration on the electron component of dark- and photocurrents in ultrathin-absorber
solar cells at applied forward bias voltage: (a) For perfectly selective contacts (∆EC,V →∞), photocurrent is completely rectified,
while leakage currents appear for open minority contacts ∆EC,V = 0 due to extraction of injected carriers, which results in a severe
VOC loss. (b) While blocking layers successfully prevent leakage of minority carriers, they also degrade the short circuit current. (c)
The loss in JSC can be attributed to the appearance of non-classical interface regions with suppressed absorptance in the vicinity of
blocking layers. Reproduced with permission from Ref. [80].
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5.2. Quantum well solar cells

Quantum wells have been investigated for photovoltaic
applications mainly in III-V semiconductor material
systems and for epitaxial growth. There are two main
types of QW solar cells: multi-quantum well (MQW)
devices and quantum well superlattice (QWSL) solar
cells, which will both be considered in the following.
As a special application of quantum well structures
in photovoltaic devices, double quantum well tunnel
junction (DQW TJ) architectures for multi-junction
solar cells are discussed.

5.2.1. Multi-quantum well solar cells Multi-quantum
well solar cells count among the earliest, prototypical
and most successful nanostructure-based solar cell
devices. The developments started in the early
days of epitaxial growth of optoelectronic devices
based on III-V semiconductor heterostructures from
alloys of GaAs with Al, In and P [87–92], and have
since spread to many new material systems such as,
dilute nitrides [93, 94] and nitride alloys [95–100],
or antimonides [101–103] and even Si and Ge alloys
[104]. While initially MQW solar cells have been
claimed to hold the promise of fundamentally higher
conversion efficiencies as compared to single junction
bulk devices [9], thermodynamical arguments soon
showed that that this is not the case [12]. However,
MQW absorbers turned out to be of great interest
for multi-junction solar cells, where they provide
absorber components with largely tunable band gaps
for ideal performance optimization [105–111]. The
main difference of MQW solar cells to bulk devices is
the presence of largely localized states in the absorber
region. These states contribute to the generation of
electron-hole pairs by extending the absorption range
of the bulk host material to longer wavelengths, but
do not participate in the transport of free carriers
to the contacts: for this purpose, photogenerated
carriers first need to be transferred to extended
states in the continuum. On the other side, the
localized states lead to an increase in recombination
- and, in consequence, dark current - due to larger
overlap of electron and hole wave functions and
local carrier accumulation. Hence, carrier escape
and capture processes mediating between QW and
continuum states are among the main aspects of
MQW solar cell operation to be investigated. Indeed,
these processes have been the subject of numerous
experiments and modelling studies [112–115]. The
common understanding of the relevant regime at
room temperature is predominance of thermionic
emission [116] over tunneling escape [117], at least
up to moderate built-in electric fields [112, 118, 119].
While the conventional models supporting this picture
are based on consideration of individual scattering

processes between discrete states of idealized QW
potentials and a bulk-like continuum with predefined
occupation, the real density of states and occupation
function reflect the conditions of operation in terms of
bias voltage and the corresponding potential profile,
and the actual illumination spectrum. The NEGF
approach, in contrast, captures the general picture and
can therefore be used to validate (or falsify) the more
approximate treatments.

For the operation of MQW, consideration of
an isolated single QW (SQW) provides most of
the relevant information, up to the effects on the
extraction process of recapture in subsequent QW.
In the following, the role of the QW depth and of
the built-in field in carrier escape and capture is
investigated for the situation where the interactions
are restricted to electron-photon and electron-phonon
scattering, i.e., carrier-carrier scattering is neglected,
which is reasonable at low excitation intensity, but
might be no longer justifiable in systems with high
optical concentration.

Carrier photogeneration in SQW is assessed by
consideration of the excess carrier density δn = n− n0,
where n0 is the carrier density in the dark, for
different energy of the monochromatic illumination.
As shown in Fig. 7(a) for the case of a 5 nm
wide AlGaAs-GaAs SQW with band offsets ∆EC =
200 meV and ∆EV = 150 meV (see Ref. [86] for
a complete list of parameters), excitation at the
absorption edge of the QW (Eγ = 1.45 eV) leads to
a spectral density with pronounced phonon satellites,
while excitation at higher energies generates carriers
also above the ground state, which results in a
broadened spectral excess carrier density. The
associated spectral current flow displayed in Fig. 7(b)
reflects the photogenerated carrier density and reveals
a transition in the photocarrier escape mechanism from
phonon-assisted tunneling to direct escape [86, 120].
For further assessment of the photocarrier escape in
SQW, the carrier extraction efficiency is evaluated as
the ratio ηext = Jsc/Jabs of short-circuit current (Jsc)
and generation current (Jabs) at low carrier lifetime
in 5 nm wide GaAs-InGaAs SQW for different values
of the built-in field, the band offsets ∆EC,V and
photon energy Eγ . The result displayed in Fig. 8
illustrates the beneficial impact of a built-in field on
the carrier escape. The effect is more pronounced at
large band offsets corresponding to strong confinement,
for which thermal escape is ineffective, and persists
even at higher excitation energies, which points at
carrier relaxation competing with extraction. For
shallow QW, on the other hand, fast extraction leads
to insensitivity to the field condition, and to absence
of relaxation of carrier generated at high energies.

Photovoltaic device characteristics can be ob-
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Figure 7. (color online) (a) Photogenerated excess carrier density in a 5 nm wide AlGaAs-GaAs SQW under monochromatic
illumination with different photon energies. At Eγ = 1.45 eV, carriers are generated on the lowest QW states, and the structure
in the spectral density is due to phonon satellites. At higher photon energies, carriers are generated at different energies in the
QW and subsequently relax to a broadened spectral density at steady state. (b) Corresponding spectral current flow, exhibiting
the transition in the escape mechanism from phonon-assisted tunneling at low excitation energy to direct tunneling escape at larger
photon energies.

tained by embedding the SQW in the intrinsic region
of a p-i-n diode as the one displayed in Fig. 3. In
Fig. 9, the current-voltage characteristics are shown
for a 10-nm InGaAs QW embedded in a GaAs diode,
with band offsets of ∆EC = 150 meV and ∆EV = 100
meV, respectively. The illumination is monochromatic
with Eγ = 1.3 eV and at an intensity of 0.1 kW/m2.
The characteristics are evaluated for different theoret-
ical descriptions: the global detailed balance picture
(DB) with absorptance from Lambert-Beer law (LB)
or the transfer-matrix method (TMM) for the standard
textbook square well absorption coefficient (αSW); the

semiclassical drift-diffusion-Poisson model (DD) cou-
pled to TMM; and the full NEGF-Poisson model. The
LB and TMM pictures provide slightly different ab-
sorptance levels, and the DD model exhibits an in-
creased dark saturation current due to the emission
into the full solid angle as compared to the loss cone
in the case of the global models, and the absence of
photon recycling. Remarkably, consideration of the ab-
sorption coefficient αNEGF as provided by the NEGF
formalism results in semiclassical characteristics that
match closely those of the full NEGF model, similar to
the situation encountered for the ultra-thin absorber
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Figure 8. Photocarrier extraction efficiency at low carrier
lifetime in a GaAs-InGaAs SQW at short circuit condition
and for different values of the built-in field, of the band
offsets for electrons and holes, and of the photon energy. The
beneficial impact of larger fields is most pronounced at strong
confinement, where thermal escape is ineffective even at larger
photon energies, in contrast to the situation at low confinement,
where thermal escape is able to compete with carrier relaxation
to the ground state.

device. This justifies a posteriori the assumption of
unit escape probability of carriers generated in quan-
tum well states that is used in the semiclassical model
and which is based on experimental observations for
device operation at room temperature and moderate
well depth [112]. As can be inferred from Fig. 8, this
unit extraction efficiency is a consequence of the shal-
low confinement, strong field and large photon energy
in combination with long radiative lifetime, such that
the escape is considerably faster than the recombina-
tion. However, the presence of ultra-fast non-radiative
recombination channels will result in incomplete car-
rier extraction from deep wells and at large forward
bias corresponding to low fields. On the other hand,
if the confinement is neglected, as in the semiclassical
approach used here, carriers are generated in extended
states only and drift or diffuse away quickly, irrespec-
tive of the actual potential profile.

In principle, carriers photogenerated in the
isolated QWs of a MQW solar cell device can be re-
captured by subsequent QWs which they pass on their
way to the contacts. In order to asses the efficiency
of this process, photocarrier extraction at low carrier
lifetime and short-circuit conditions was investigated in
GaAs-InGaAs QW solar cell devices consisting of either
three isolated QW or the SQW components of this
structure, i.e., left, central and right SQW devices. For
∆EC = 150 meV and ∆EV = 100 meV and Eγ = 1.25
eV, the total generation of the three SQW differs very
little from the generation in the MQW device, while the
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Figure 9. Current-voltage characteristics of a single
GaAs-InGaAs quantum well photodiode for monochromatic
illumination with Eγ = 1.3 eV and at an intensity of 0.1
kW/m2, as provided by: the detailed balance picture (DB)
with absorptance from Lambert-Beer law (LB) or the transfer-
matrix method (TMM) for square well absorption coefficient
(αSW ); the semiclassical drift-diffusion-Poisson model (DD)
coupled to TMM; and the full NEGF-Poisson model. While
the LB and TMM laws provide slightly different absorptance
levels, consideration of the absorption coefficient as provided by
the NEGF formalism results in semiclassical characteristics that
match closely those of the full NEGF model. Reproduced with
permission from Ref. [121].

emission is 20% larger in the MQW case, confirming
the detrimental impact of carrier capture.

Since we will consider strongly coupled QW
systems below, the transition between isolated and
coupled well structures shall be examined here. Figure
10 shows the spectral current flow in GaAs-InGaAs
MQW structures (∆EC = 150 meV, ∆EV = 100 meV,
Eγ = 1.2 eV) with barrier thickness decreasing
from LB = 15 nm to LB = 5 nm. Coupling of
QW evidenced by a finite tunnel current components
between adjacent QW sets in at around LB = 12.5 nm.
At LB = 15 nm, carrier extraction is based purely on
phonon-assisted thermal escape and hot carrier flow
in the quasi-continuum above QW. With shrinking
barrier thickness, the tunneling current component
increases, while the hot carrier component is reduced
and restricted to the extraction process outside the
QW region.

5.2.2. Quantum well superlattice solar cells It was
shown in the last section that for strong confinement
in deep QW, thermal escape is no longer efficient.
In that situation, carrier extraction via tunneling
between QW can be advantageous. In the case of a
regular (i.e., periodic) sequence of QW and barriers,
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Figure 10. (color online) Evolution of the spectral current flow at photon energy Eγ = 1.2 eV (generation of confined carriers) in
GaAs-InGaAs MQW solar cells with increasing coupling of the QW due to shrinking barrier thickness. At 15 nm barrier thickness
(LB), the QW are completely decoupled, and photocurrent flows in the quasi-continuum, following phonon-assisted carrier escape.
At LB = 10 nm, weak coupling of the QW induces a tunneling current component. At LB = 5 nm, transport in the QW region is
dominated by tunneling and the hot carrier flow is strongly reduced except for the extraction at the contacts.

the structure is termed a QW superlattice (QWSL),
and transport is assumed to proceed via extended
miniband states. However, in realistic systems, the
number of periods is finite, and the miniband formation
is incomplete. This is displayed in Fig. 11 for the
case of a In0.52Al0.35Ga0.15As-In0.53Ga0.47As system
(parameters as in Ref. [84]) with 2.5 nm well width and
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Figure 11. Evolution of the 1D density of states (at k‖ = 0)
for the InAlGaAs-InGaAs SL with QW and barrier thicknesses
of 2.5 nm and 3.5 nm, respectively, with increasing number of
periods. For comparison, the result for the perfectly periodic
structure is shown as well (inf.). While the bandwidth converges
quickly, the structure in the DOS that is related to the finite
number of QW remains up to large number of periods.

3.5 nm barrier thickness and finite as well as infinite
number of periods. For the finite structures, the 1D-
DOS at k‖ = 0 is evaluated from the NEGF, assuming
contacts made of the barrier material, and exhibits a
spectral structure that reflects the number of periods
considered, and which converges to the DOS for the
infinite – i.e., perfectly periodic – structure, which is
computed via solution of the effective mass Schrödinger
equation with periodic boundary conditions.

In realistic devices, the potential is not flat at
the maximum power point, and the effects of finite
built-in fields need to be considered when evaluating
the optoelectronic properties. Figures 12 (a) and (b)
show the transition from flat band to finite built-
in field for the case of the InAlGaAs-InGaAs QWSL
with periods of 1.5 nm thick barriers separating 2.5
nm wide QW. The local density of states (LDOS)
reveals the preservation of the effective band gap
increase as compared to the QW material. In this
situation of strong coupling of adjacent periods, carrier
extraction proceeds quasi-ballistically even at finite
field, as can be seen in Fig. 12 (c). However, with
increasing barrier thickness, the extraction mechanism
changes to sequential tunneling with carrier relaxation
in between periods, which makes contact to the regime
of transport found when approaching the QWSL
from the MQW situation. For the thin barrier
QWSL structures, the quasi-ballistic extraction is very
fast, which results in unit extraction efficiency and
leads to current-voltage characteristics that are the
exact superposition of bias-dependent photocurrent
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Figure 12. (color online) (a) Local density of states in a 20-period InAlGaAs-InGaAs QWSL with 1.5 nm/3.5 nm barrier/well
thickness, exhibiting the targeted miniband formation at increased effective band gap. (b) In this strong coupling regime, both
band gap widening and wave function delocalization are preserved under large built-in fields. (c) Spectral photocurrent flow for the
configuration in (b) as well as for larger values of the barrier thickness, revealing a transition of the transport regime from quasi-
ballistic extraction to sequential tunneling with carrier relaxation between periods. Reproduced with permission from Ref. [84].

determined from the absorptance (Jabs) and the
radiative dark current (Jdark), as shown in Fig. 13.
However, as in the case of the ultra-thin absorber
device, the voltage-dependance of the photocurrent
is significant, and the conventional approach of using
the short circuit current in the superposition is not
applicable [84].

5.2.3. Quantum well tunnel junctions Series-connected
multi-junction solar cell architectures require the
matching of currents across the entire cell stack.
In practice, the connection is achieved via inter-
band tunnel-recombination junctions between subcells,
which mediate between electron and hole flows in dif-
ferent subcells. In many cases, multi-junction devices
are designed for operation under concentration, which
results in large currents to be passed through the junc-
tion. The interband tunnel current itself depends criti-

cally on the thickness of the junction - i.e., the field sus-
tained by the large gradient in doping - and the band
gap of the material: the larger the field and the smaller
the gap, the larger the tunnel current that can be sus-
tained. However, both the presence of low band gap
material and of large doping concentration required for
the high fields induce parasitic absorption losses. In or-
der to reduce such losses in the case of the InP-based
multi-junction solar cells, the introduction of a double
quantum well (DQW) tunnel junction was proposed,
which features a region of lower band gap material,
but with lower absorption as compared to bulk [122].
In order to study the nature and role of the QW states
in the TJ region, both of the TJ structures investigated
experimentally in Ref. [122] and displayed in Fig. 14(a)
were simulated using NEGF [33, 123]: an InAlGaAs-
InGaAs bulk heterojunction with and without InGaAs
DQW inserted in the junction region.
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Figure 13. Current-voltage characteristics of the 20-
period InAlGaAs-InGaAs superlattice in the dark and under
monochromatic illumination with photons of energy Eγ = 0.95
eV and at an intensity of Iγ = 0.1 kW/cm2 . Due to
the high degree of wave function delocalization, the carrier
escape probability is unity, i.e., the light JV-curve is the exact
superposition of the photocurrent from the absorptance and of
the radiative dark current. However, it is essential to consider
the bias dependence of the photocurrent, as significant deviations
from the value at short circuit are observed. Reproduced with
permission from Ref. [84].

The main requirement on a model for interband
tunneling is a consistent picture of the complex
band structure that connects valence and conduction
bands. For this reason, a two-band spz tight-binding
model is used for the description of the electronic
structure of the bulk constituent materials [25].
In conjunction with the NEGF-Poisson framework
applied to the two heterojunctions, it provides a
featureful image of the local density of states in the
junction region [Fig. 14(b)]. For junctions where
direct tunneling provides the main contribution to the
interband current, the semiclassical Wentzel-Kramers-
Brillouin (WKB) formalism can reliably predict the
current-voltage characteristics, whereas consideration
of inelastic electron-phonon interaction - and, hence,
a complete NEGF simulation - is required for a valid
description of tunneling between different points of the
Brillouin zone in indirect gap materials [124], or in the
situation of incomplete energetic overlap of bands in
left and right reservoirs as in the present case [33].
Indeed, as the band diagrams and LDOS maps for zero
bias displayed in Fig. 14(b) show, no direct tunneling
is possible already at small forward bias voltage. On
the other hand, the phonon-mediated tunneling picture
resulting from the NEGF simulation agrees well with
the experimental characteristics, as demonstrated in
Fig. 14(c), especially regarding the peak voltage and

the relative magnitude of currents in bulk and DQW
tunnel-heterojunctions. Deviations at large forward
bias are due to the onset of trap-assisted tunneling,
which presently is not included in the model.

More importantly, the NEGF approach sheds
light on the roles of the different localized states in
the junction region and of inelastic electron-phonon
scattering. For instance, resonance features in the
current-voltage characteristics can be attributed to the
energetic alignment of the different QW states [Fig.
15(a), left side], and the corresponding spectral current
flow [Fig. 15(a), right side] exhibits the signature
of the discrete energy of the optical phonons that
are absorbed or emitted in the inelastic scattering
processes. The absorption characteristics of the hetero-
junctions are assessed based on the same electronic
structure as the tunneling transport. Figure 15(b)
shows the local absorption coefficient in the junction
region as computed from NEGF for the DQW-
heterojunction close to zero bias voltage. While
the absorption in the reservoir region reflects the
parabolic two-band bulk characteristics, the absorption
in the junction region exhibits pronounced subband
tails due to the strong built-in electric field. This
strong deviation from both flat band bulk and square
well DQW absorption is evidenced in Fig. 15(c)
which displays the absorptance for all three cases, and
should be taken into consideration when assessing the
absorption losses in tunnel junctions [123].

5.3. Quantum dot solar cells

QD offer a large degree of tunability in their optoelec-
tronic properties via adjustment of configurational pa-
rameters such as size, shape and composition, and are
therefore attractive candidates for the implementation
of third-generation photovoltaic concepts. The many
applications of QD in photovoltaic devices fall in two
main categories: those where the QD have purely opti-
cal functionality, e.g., as luminescent species for spec-
tral conversion, and those where the QD states par-
ticipate in the actual photogeneration process. Repre-
sentatives of both applications have been studied using
NEGF and will be discussed in the following.

5.3.1. Quantum dot fluorescence Uniform ensembles
of size-controlled QD are widely considered as
luminescent species in luminescent solar concentrator
architectures, where they are used to convert broad-
band to narrow-band illumination tuned to the
absorption edge of a specific solar cell material [126].
The key information thereby are the absorption and
emission spectra of the QD, the latter in dependence
of the optical excitation. In such an application,
the functionality of QD is purely optical, there is no
electronic coupling among the QD and no photocarrier
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Figure 14. (color online) Structure and characteristics of bulk and DQW tunnel-heterojunction devices investigated experimentally
in Ref. [122]: (a) Layer stack with materials and doping species, where the alloys are In0.52Al0.33Ga15As and In0.53Ga0.47As and
the doping densities amount to 2×1017 cm−3 for p+/n+ and 1019 cm−3 for p++/n++. (b) Local density of states in the junction
region, exhibiting a large variety of bound and quasi-bound states in the quantum wells induced by the heterogeneous doping and
the heterostructure potential. (c) Current-voltage characteristics for the bulk and DQW tunnel junction devices: the simulation
reproduces the experimental peak voltage and the large difference in magnitude between the two architectures. The deviation at
large bias is due to the onset of prevailing trap-assisted tunneling, which is not included in the model. Adapted with permission
from Ref. [33].

extraction occurs. This situation of optical operation
in electronically isolated QD is depicted schematically
in Fig. 16(a) for the most basic simplification to a two-
level system. Conventionally, the emission spectrum is
computed based on the occupation of the QD levels
as obtained from a rate equation model based on
Fermi-Golden-Rule transition rates for the eigenstates
of the isolated QD, and the eigenenergies for the
peak position, while the line shape of the absorption
and emission is added using empirical expressions for
homogeneous and inhomogeneous broadening. Using
the NEGF formalism, physical line shapes are provided
automatically and in relation to the actual relaxation
processes, such as due to electron-phonon interaction
or Auger-cooling [127,128].

In order to enable full spectrum computations by
NEGF, the single QD Hamiltonian is parametrized
using the microscopic solution of the 3-D QD
Schrödinger equation. The electronic single particle
states of the QD (”QD orbitals”) are thereby described

via the field operator

Ψ̂(r, t) =
∑
n

ψn(r)d̂n(t), (75)

with ψ the single electron wave functions and d̂n the
annihilation operator for electrons in QD orbitals n.
The non-equilibrium quantum statistical averages of
these field operators define the electronic single particle
Green’s functions,

Gmn(t, t′) = − i
~
〈T̂C{d̂m(t)d̂†

n(t)}〉. (76)

In order to obtain the photoluminescent emission spec-
trum, the NEGF equations (38) and (39) are solved
in the presence of electron-photon interaction (for the
polarization build-up) as well as electron-phonon and
electron-electron interaction (for relaxation of photo-
generated carriers), and with vanishing contact self-
energies (closed contacts ≡ infinite potential barriers).
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Figure 15. (color online) (a) Microscopic resolution of resonance features in the current-voltage characteristics of the DQW TJ by
relation to the alignment of localized states in the junction region (left panel). The associated spectral current flow (right panel)
reflects the crucial role of inelastic scattering by coupling of electrons to optical phonons with discrete energy. (b) Spatially resolved
absorption coefficient of the DQW TJ, displaying the band-tailing effects of the strong doping-induced fields in the central region.
(c) The absorptance of the DQW TJ (thick solid line) is reduced as compared to the bulk QW material (thin solid line), but deviates
strongly from the absorptance of a DQW structure at flat band conditions (dashed line). Adapted with permission from Ref. [33],
and from Ref. [123].

In the basis (75), the scattering components of the self-
energy for the stimulated electron-photon processes
reads

Σeγ,≶mn (E, ~ω) =
∑
k,l

Meγ,η
mk M

eγ,η
ln

{
G

≶
kl(E − ~ω)

+G
≶
kl(E + ~ω)

}
A2
η(~ω), (77)

where the coupling matrix elements are defined as

Meγ,α
mn ≡

( e

m0

)
pαmn. (78)

Similarly, the self-energy components for isotropic
spontaneous emission into free-field modes read

Σ̄eγ,≶mn (E) ≈ µ0

πc0

∑
k,l

M̄eγ
mkM̄

eγ
ln

∫ ∞
0

dE′

2π~
E′G

≶
kl(E − E

′).

(79)

For the scattering with phonons, only interaction with
equilibrium bulk modes is considered [129], which
results in the self-energy expressions

Σep,≶nm (E) =
∑
Λ,Q

∑
k,l

Mep
nk(Λ,Q)Mep,∗

ml (Λ,Q)

×
[
NΛQG

≶
kl(E ∓ ~ΩΛQ)

+ (NΛQ + 1)G
≶
kl(E ± ~ΩΛQ)

]
(80)

where

Mep
lm(Λ,Q) =

1√
V
UΛ,Q

∫
d3r ψ∗l (r)ψm(r)eiQ·r.

(81)

The form assumed for the interaction potential is the
same as for the planar case, i.e., given by Eqs. (62)
and (64).
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(a)

(b)

Figure 16. (a) Schematic representation of the model system
for QD fluorescence, where the incident photon flux φ0 generates
a polarization of the system that leads to spontaneous emission
(flux φPL). (b) The evolution of the system towards the
photoluminescent steady state is reflected in the convergence of
absorption and emission rates in the self-consistency iteration of
the carrier Green’s functions and the electron-photon interaction
self-energies. Reproduced from Ref. [125] with permission from
the PCCP Owner Societies.

The single QD problem is the only case so far
where we included a treatment of electron-electron
interaction. In the QD orbital basis, the direct-collision
self-energy acquires the form

Σdc,≶nm (E) =i~
∑

n1,n2,n3

∑
m1,m2,m3

Vm1m2n3mVm3nn1n2

×
∫

dE′

2π~
π≶
n2m2n3m3

(E′)G≶
n1m1

(E − E′)

(82)

with the Coulomb matrix elements

Vnklm =

∫
d3r

∫
d3r′ψ∗n(r)ψ∗k(r′)V (r− r′)ψl(r

′)ψm(r),

(83)

where V (r) = e2/(4πε0ε(r)|r|) is the (bare) Coulomb
potential, and the longitudinal intraband polarization

functions are given by

π
≶
klmn(E) =− i~

∫
dE′

2π~
G

≶
kl(E

′)G≷
mn(E′ − E), (84)

where all indices denote states of the same carrier
species.

Since photogenerated carriers cannot escape to
contacts, polarization starts to build up, and with it
the emission. The relation between the polarization
function and the absorption and emission rates is given
by the respective terms in Eq. (49) for the net radiative
rate: in the QD orbital bases, the (net) absorption rate
reads

Rabs,net(~ω) =
∑
η

Φγ0η(~ω)Aη(~ω) (85)

where Φγ0 is the incident photon flux and the absorption
cross-section is given by

Aη(~ω) =
c0

2nrω
<{iΠ̂ηη(~ω)}. (86)

The photon self-energy term Π̂ ≡ Π> − Π< is defined
via the components

Π
≶
ηη′(E) = µ0

∑
mkln

Meγ,η
mk M

eγ,η′

ln P≶
mkln(E). (87)

The electron-hole polarization function elements have
a form similar to the intra-band terms (84),

P≶
mkln(E) = −i~

∫
dE′

2π~
G

≶
mk(E′)G

≷
ln(E′ − E), (88)

but where (m, k) label electron states and (l, n) label
hole states, and which is related to the spectral
function P̂/(2π) of occupied electron-hole pairs (P̂ ≡
i{P> − P<}) [83]. Similarly, the spectral rate
of spontaneous emission into an optically isotropic
medium can be written as follows:

R̄em(~ω) =
nrω

2π2~c0
<{iΠ̄<(~ω)}. (89)

Figure 16(b) displays the evolution of the absorption
and emission rates of the two-level model under
resonant optical excitation during the self-consistency
iteration of Green’s functions and self-energies. Upon
reaching convergence, the two rates are balanced,
which amounts to the steady state of photoluminescent
device operation.

The formalism is applied to the fluorescence
of PbSe/PbS core-shell QD ensembles under near-
infrared (NIR) illumination as used for advanced QD-
sensitized up-conversion devices [125]. The electronic
structure of the QD is computed based on semi-
empirical methods, such as k · p theory [130, 131] or
the empirical pseudo-potential method (EPM) [132].



PV at the mesoscale: insights from quantum-kinetic simulation 25

0

0.2

0.4

0.6

0.8

1

0.7 0.8 0.9 1 1.1 1.2

ab
s.

/e
m

. 
[a

rb
. 

u
n

it
s]

photon energy Ephot [eV]

absorption

emission

Figure 17. Absorption (dotted) and emission spectra of a single
PbSe QD of 3 nm radius under near-infrared solar illumination.
The excited-state relaxation via electron-phonon interaction and
Auger electron cooling results in sizable line broadening and a
pronounced Stokes shift.

Figure 17 shows the absorption and emission spectra
of a single PbSe QD (R=3nm) with electronic structure
from an EPM model and under illumination with
full solar NIR spectrum between 0.76 eV and 1.1 eV.
Emission is into an optically isotropic medium and
excited state relaxation is mediated via electron-
phonon (bulk AC and LO) coupling and Auger electron
cooling. The relaxation processes result in sizable line
broadening and Stokes shift, which are not present
in the spectra resulting from the semiclassical rate
equation models.

5.3.2. Quantum dot array architectures In photo-
voltaics, quantum dot arrays are mainly used as tun-
able absorbers in multi-junction devices [133,134] and
for intermediate band solar cells [135]. In difference
to their quantum well counterparts discussed above,
the confinement in all spatial dimensions renders the
full microscopic resolution of the generation and trans-
port problem prohibitively expensive from the compu-
tational point of view. For this reason, we extend the
parametrization scheme of the single QD (SQD) case
to 1-D QD superlattice (QDSL) structures with finite
number of periods and furnished with carrier selective
contacts. The only element that is new with respect
to the SQD model - in addition to the contacts - are
the interdot hopping terms, which are obtained from
the transfer integrals of the localized basis elements in
the form of QD orbitals or Wannier functions. This
amounts to field operators of the form

Ψ̂(r, t) =
∑
n,L

ψn,L(r)d̂n,L(t), (90)

with d̂n,L the annihilation operator for electrons in QD
orbitals n at QD site L, and ψn,L the corresponding
QD orbital wave function. In this basis, the model
corresponds to a simple nearest-neighbor tight-binding
chain of finite length expressed by the Hamiltonian

Ĥm0 =

NQD−1∑
L=1

tm,LL+1

[
d̂†
m,L+1d̂m,L + h.c.

]

+

NQD∑
L=1

εm,Ln̂m,L, (91)

where NQD is the number of dots, tm is the inter-dot

coupling, n̂m ≡ d̂†
md̂m is the carrier density operator

and εm is the QD energy level. The dot-contact
coupling is considered in the usual way by means of
a contact self-energy that vanishes for closed contacts.
Use of the basis in (90) introduces an additional spatial
index in the expressions for Green’s functions and
interaction self-energies as defined above for the single
QD case. Due to the localized nature of the basis
functions, the coupling matrices (78) and (81) are
approximated as diagonal in the spatial index.

Figure 18 (a) shows a schematic representation
of the above model for the selectively contacted QD
array. The corresponding local and integrated density
of states as obtained from the Green’s functions is
displayed in Fig. 18(b). The selective contacts
induce a broadening that reflects the hybridization
of QD array states with the modes of the bulk
electrodes. In the case of QD absorbers with generation
and extraction of carriers in QDSL miniband states,
the main questions to be addressed are related
to the impact on the photovoltaic performance of
configurational parameters such as the coupling t
between dots and the coupling V from the QD
to the contacts, as well as the effects of the
finite size N . In Fig. 19, the different types
of steady-state operation in function of coupling
parameters and carrier lifetime are illustrated in
terms of the convergence of radiative rates and
terminal current: (a) Photoluminescence at vanishing
contact coupling (closed contact) corresponding to the
situation displayed in Fig. 16. (b) Unit photocarrier
extraction efficiency at long lifetime and strong contact
coupling. (c) Intermediate regime with sub-unit
extraction efficiency, where the emission rate and the
rate of carrier extraction sum up to the generation rate.
In (d), the extraction efficiency is shown as a function
of interdot and dot-contact coupling strength and for
different carrier lifetime, revealing the dominant role
of the dot-contact coupling [30].

For the application in intermediate band solar
cells (IBSC), the selective contacting scheme of
the QD array needs to be modified in order to
isolate electronically the intermediate band, which
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(a)

(b)

qVbias

Figure 18. (a) Schematic representation of the effective model
for a selectively contacted QD array, with QD energy levels
ε, inter-dot hopping parameters t and dot-contact coupling
V . Again, a finite voltage between contacts is imposed by a
corresponding splitting of the chemical potentials ∆µ = qVbias.
(b) Local and integrated density of states, illustrating the
hybridization of QD and electrode states at the majority carrier
contacts. Adapted with permission from Ref. [30].

amounts to closing also the majority carrier contacts
for the lowest miniband. Figure 20(a) displays
the modified QD-IBSC setup including the optical
transitions to be considered, i.e., two-step transitions
via the intermediate band utilizing lower-energy
photons in addition to the direct transitions between
the contacted minibands. The corresponding local
and integrated DOS is shown in Fig. 20(b) and
reflects the isolation of the lower electron miniband,
where the electronic states are broadened solely due
to the interaction with phonons. The lack of
contact broadening represents a challenge for the
convergence of the optoelectronic rates in the NEGF
self-consistency iteration: as shown in Fig. 21(a),
in the first phase of the iteration process, the DOS
needs to converge, before the actual convergence of
the rates for interband- and subband transitions sets

(a)

(b)

(c)

(d)

Figure 19. Photocarrier extraction at short circuit as a function
of dot-contact coupling VB and carrier lifetime τr for fixed (a-
c) or varying (d) interdot-coupling t: (a) At closed contacts,
all of the photogenerated carriers recombine radiatively. (b)
At large contact coupling and long carrier lifetime, all of the
photogenerated carriers are extracted as photocurrent. (c) At
intermediate contact coupling and moderate carrier lifetime,
photocarrier extraction is incomplete. (d) At all values of the
carrier lifetime, the extraction efficiency is dominated by the
dot-contact coupling. Adapted with permission from Ref. [30].

in. While the rate for the interband transition
(Rv→c1) remains almost uniform, the rate for the
subband transition (Rc1→c2

) requires accumulation of
photogenerated charge carriers in the lower miniband
in order to evolve to the common steady-state value.
This is reflected in the convergence behaviour of the
photocurrent Jsc extracted at the selective contacts.
The non-radiative decoupling of the electron minibands
leads to radiative dark current-voltage characteristics
that - in the bias region close to the open circuit voltage
- are no longer dominated by the radiative currents
of the lower or higher minibands in single junction
configuration, but by the two-step process exhibiting
a much larger ideality factor, as shown in Fig. 21(b).
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(a)

(b)

Figure 20. (a) Schematic representation of the effective
model for QD-IBSC, based on a selectively contacted QD
array with electronically isolated lowest miniband. Adapted
with permission from Ref. [68]. (b) Corresponding local and
integrated density of states, reflecting the absence of contacts in
the intermediate band.

5.4. Nanowire solar cells

For the sake of completeness, the case of nanowire
solar cells is addressed briefly here, as such devices also
count among the nanostructure-based photovoltaic
architectures considered in this Topical Review. While
nanowire absorbers have been simulated by NEGF
[28], in most of the cases, the diameters considered in
nanowire photovoltaics for the exploitation of antenna
effects are too large to allow for electronic quantum
confinement, and the transverse modes are dense
enough to be treated as a continuum, which renders
the nanowire case very similar to the ultrathin absorber
solar cell covered in Sec. 5.1.

6. Conclusions

Complex nanostructure architectures are ubiquitous in
the field of high efficiency photovoltaics. An accurate
and physically valid description of the microscopic pro-

(a)

(b)

Figure 21. (a) Convergence of the net inter- and subband
transition rates for the QD-IBSC configuration during the NEGF
self-consistency iteration. In the first phase, the density of states
consolidates via broadening due to electron-phonon interaction.
The interband transition rate then converges quickly to the
steady-state value, while the subband transition rate requires
build-up of photogenerated charge carrier population in the
lower miniband in order to evolve to the common steady-state
rate. This behaviour is reflected in the convergence of the
photocurrent extracted at selective contacts. Adapted with
permission from Ref. [68]. (b) As a consequence of the non-
radiative decoupling of the electron minibands, the radiative
dark current-voltage characteristics are no longer dominated by
either single-junction characteristics with lower or higher band
gaps, but by the two-step process exhibiting much larger ideality
factor.

cesses governing the photovoltaic operation of such de-
vices requires a theory and simulation framework that
reaches beyond the limitations of the standard semi-
classical picture, while reproducing the results of the
latter in situation where it is applicable. The quantum-
kinetic approach presented here provides such a frame-
work and gives insight into the microscopic mecha-
nisms of photovoltaics at the nanoscale. Most im-
portantly, the approach allows to establish the essen-
tial structure-property relations that govern the pho-
tovoltaic performance of a given device architecture,
by directly linking microscopic configuration param-
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eters with mesoscopic device characteristics. At the
same time, it provides a valuable instrument for the
validation of computationally less expensive but more
approximate treatments.

While the formalism is very general and applicable
to a wide range of effects relevant to photovoltaic de-
vice operation, such as photocurrent generation, elec-
troluminescence and photoluminescence, models still
need to be customized to the specific situation in or-
der to allow meaningful computations. However, with
the advances in computational power, the enhanced ac-
curacy of the underlying electronic structure and the
growing spatial extent of permissible model domains
will allow increasingly predictive simulations of nanos-
tructure solar cell characteristics.
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[12] G. Araújo, A. Mart́ı, F. Ragay, and J. Wolter, “Efficiency
of multiple quantum well solar cells,” in Proc.
12th European Photovoltaic Solar Energy Conference,
p. 1481, 1994.

[13] P. Würfel, “The chemical potential of radiation,” J. Phys.
C: Solid State Phys., vol. 15, p. 3967, 1982.

[14] U. Rau, “Reciprocity relation between photovoltaic
quantum efficiency and electroluminescent emission of
solar cells,” Phys. Rev. B, vol. 76, no. 8, p. 085303,
2007.

[15] U. Aeberhard and U. Rau, “Microscopic perspective on
photovoltaic reciprocity in ultrathin solar cells,” Phys.
Rev. Lett., vol. 118, p. 247702, 2017.

[16] S. M. Ramey and R. Khoie, “Modeling of multiple-
quantum-well solar cells including capture, escape, and
recombination of photoexcited carriers in quantum
wells,” IEEE Trans. Electron Devices, vol. 50, p. 1179,
2003.

[17] M. Gioannini, A. P. Cedola, N. D. Santo, F. Bertazzi,
and F. Cappelluti, “Simulation of Quantum Dot Solar
Cells Including Carrier Intersubband Dynamics and
Transport,” IEEE J. Photovolt., vol. 3, pp. 1271–1278,
2013.

[18] L. E. Henrickson, “Nonequilibrium photocurrent modeling
in resonant tunneling photodetectors,” J. Appl. Phys,
vol. 91, p. 6273, 2002.

[19] M. A. Naser, M. J. Deen, and D. A. Thompson, “Spectral
function and responsivity of resonant tunneling and
superlattice quantum dot infrared photodetectors using
green’s function,” J. Appl. Phys., vol. 102, no. 8,
p. 083108, 2007.

[20] M. F. Pereira and K. Henneberger, “Microscopic theory
for the influence of Coulomb correlations in the light-
emission properties of semiconductor quantum wells,”
Phys. Rev. B, vol. 58, pp. 2064–2076, 1998.

[21] S.-C. Lee and A. Wacker, “Nonequilibrium Green’s
function theory for transport and gain properties of
quantum cascade structures,” Phys. Rev. B, vol. 66,
p. 245314, 2002.

[22] T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching,
and C. Deutsch, “Theory of nonequilibrium quantum
transport and energy dissipation in terahertz quantum
cascade lasers,” Phys. Rev. B, vol. 79, p. 195323, 2009.

[23] S. Steiger, R. G. Veprek, and B. Witzigmann, “Electrolu-
minescence from a quantum-well LED using NEGF,” in
Proceedings 13th International Workshop on Computa-
tional Electronics, 2009.

[24] D. A. Stewart and F. Leonard, “Energy conversion
efficiency in nanotube optoelectronics,” Nano Lett.,
vol. 5, p. 219, 2005.

[25] U. Aeberhard and R. H. Morf, “Microscopic nonequilib-
rium theory of quantum well solar cells,” Phys. Rev. B,
vol. 77, p. 125343, 2008.

[26] U. Aeberhard, “Theory and simulation of photogeneration
and transport in Si-SiOx superlattice absorbers,”
Nanoscale Res. Lett., vol. 6, p. 242, 2011.

[27] U. Aeberhard, A. Gonzalo, and J. M. Ulloa, “Photocarrier
extraction in GaAsSb/GaAsN type-II QW superlattice
solar cells,” Appl. Phys. Lett., vol. 112, no. 21,
p. 213904, 2018.

[28] A. Buin, A. Verma, and S. Saini, “Optoelectronic
response calculations in the framework of k.p coupled to
non-equilibrium Green’s functions for one-dimensional
systems in the ballistic limit,” J. Appl. Phys., vol. 114,
no. 3, p. 033111, 2013.



PV at the mesoscale: insights from quantum-kinetic simulation 29

[29] U. Aeberhard, “Effective microscopic theory of quantum
dot superlattice solar cells,” Opt. Quantum. Electron.,
vol. 44, pp. 133–140, 2012.

[30] A. Berbezier and U. Aeberhard, “Impact of nanostructure
configuration on the photovoltaic performance of
quantum-dot arrays,” Phys. Rev. Applied, vol. 4,
p. 044008, 2015.

[31] N. Cavassilas, C. Gelly, F. Michelini, and M. Bescond,
“Reflective Barrier Optimization in Ultrathin Single-
Junction GaAs Solar Cell,” IEEE J. Photovolt., vol. 5,
no. 6, pp. 1621–1625, 2015.

[32] U. Aeberhard, “Simulation of ultrathin solar cells beyond
the limits of the semiclassical bulk picture,” IEEE J.
Photovolt., vol. 6, no. 3, pp. 654–660, 2016.

[33] U. Aeberhard, “Theoretical investigation of direct
and phonon-assisted tunneling currents in InAl-
GaAs/InGaAs bulk and quantum-well interband tunnel
junctions for multijunction solar cells,” Phys. Rev. B,
vol. 87, p. 081302, 2013.

[34] U. Aeberhard, “Theory and simulation of quantum
photovoltaic devices based on the non-equilibrium
Greens function formalism,” J. Comput. Electron.,
vol. 10, pp. 394–413, 2011.

[35] R. Rhyner and M. Luisier, “Atomistic modeling of coupled
electron-phonon transport in nanowire transistors,”
Phys. Rev. B, vol. 89, p. 235311, 2014.

[36] L. P. Kadanoff and G. Baym, Quantum Statistical
Mechanics. Benjamin, Reading, Mass., 1962.

[37] L. Keldysh, “Diagram technique for nonequilibrium
processes,” Sov. Phys. JETP, vol. 20, pp. 1018–1026,
1965.
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“Fluorescence of colloidal PbSe/PbS QDs in NIR
luminescent solar concentrators,” Phys. Chem. Chem.
Phys., vol. 14, pp. 16223–16228, 2012.

[126] K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien,
“Quantum-dot concentrator and thermodynamic model
for the global redshift,” Appl. Phys. Lett., vol. 76, no. 9,
pp. 1197–1199, 2000.

[127] S. V. Kilina, C. F. Craig, D. S. Kilin, and O. V.
Prezhdo, “Ab initio time-domain study of phonon-
assisted relaxation of charge carriers in a pbse quantum
dot,” J. Phys. Chem. C, vol. 111, no. 12, pp. 4871–4878,
2007.

[128] J. M. An, M. Califano, A. Franceschetti, and A. Zunger,
“Excited-state relaxation in PbSe quantum dots,” J.
Chem. Phys., vol. 128, no. 16, p. 164720, 2008.

[129] N. Vukmirovic, Z. Ikonic, D. Indjin, and P. Harrison,
“Quantum transport in semiconductor quantum dot
superlattices: Electron-phonon resonances and polaron
effects,” Phys. Rev. B, vol. 76, p. 245313, 2007.

[130] S. Tomic, A. G. Sunderland, and I. J. Bush, “Parallel
multi-band k[middle dot]p code for electronic structure
of zinc blend semiconductor quantum dots,” J. Mater.
Chem., vol. 16, pp. 1963–1972, 2006.

[131] R. Vaxenburg and E. Lifshitz, “Alloy and heterostruc-
ture architectures as promising tools for controlling
electronic properties of semiconductor quantum dots,”
Phys. Rev. B, vol. 85, p. 075304, 2012.

[132] J. M. An, A. Franceschetti, S. V. Dudiy, and A. Zunger,
“The peculiar electronic structure of PbSe quantum
dots,” Nano Letters, vol. 6, no. 12, pp. 2728–2735, 2006.



PV at the mesoscale: insights from quantum-kinetic simulation 32

[133] R. Oshima, A. Takata, and Y. Okada, “Strain-
compensated InAs/GaNAs quantum dots for use in
high-efficiency solar cells,” Appl. Phys. Lett., vol. 93,
no. 8, p. 083111, 2008.

[134] G. Conibeer, M. Green, E.-C. Cho, D. König, Y.-h. Cho,
T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang,
T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park,
X. Hao, and D. Mansfield, “Silicon quantum dot

nanostructures for tandem photovoltaic cells,” Thin
Solid Films, vol. 516, no. 20, pp. 6748–6756, 2008.

[135] A. Mart́ı, N. Lopez, E. Antolin, E. Canovas, C. Stanley,
C. Farmer, L. Cuadra, and A. Luque, “Novel
semiconductor solar cell structures: The quantum
dot intermediate band solar cell,” Thin Solid Films,
vol. 511, p. EMRS, July 2006.


	Introduction
	Physics of nanostructure-based solar cell device operation
	The semiclassical standard model of photovoltaic device operation
	Global detailed balance characteristics
	Semiclassical balance equations with local Fermi-Golden-Rule rates

	Non-equilibrium quantum statistical mechanics formulation of photovoltaic processes
	Theoretical formalism
	Hamiltonian
	Non-equilibrium Green's functions
	Interaction self-energies
	Contacts
	Steady-state device characteristics

	Numerical implementation
	General algorithm
	Choice of basis
	Numerical challenges
	Common pitfalls


	Numerical results for selected applications
	Ultra-thin absorbers
	Quantum well solar cells
	Multi-quantum well solar cells
	Quantum well superlattice solar cells
	Quantum well tunnel junctions

	Quantum dot solar cells
	Quantum dot fluorescence
	Quantum dot array architectures

	Nanowire solar cells

	Conclusions

