000849679 001__ 849679
000849679 005__ 20210129234223.0
000849679 0247_ $$2doi$$a10.1109/IEDM.2017.8268451
000849679 037__ $$aFZJ-2018-03815
000849679 1001_ $$0P:(DE-Juel1)161180$$aStange, D.$$b0$$eCorresponding author
000849679 1112_ $$a2017 IEEE International Electron Devices Meeting (IEDM)$$cSan Francisco$$d2017-12-02 - 2017-12-06$$wCA
000849679 245__ $$aQuantum confinement effects in GeSn/SiGeSn heterostructure lasers
000849679 260__ $$bIEEE$$c2017
000849679 300__ $$a24.2.1-24.2.4
000849679 3367_ $$2ORCID$$aCONFERENCE_PAPER
000849679 3367_ $$033$$2EndNote$$aConference Paper
000849679 3367_ $$2BibTeX$$aINPROCEEDINGS
000849679 3367_ $$2DRIVER$$aconferenceObject
000849679 3367_ $$2DataCite$$aOutput Types/Conference Paper
000849679 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1531922437_32129
000849679 520__ $$aThe development of a light source on Si, which can be integrated in photonic circuits together with CMOS electronics, is an outstanding goal in the field of Silicon photonics. This could e.g. help to overcome bandwidth limitations and losses of copper interconnects as the number of high-speed transistors on a chip increases. Here, we discuss direct bandgap group IV materials, GeSn/SiGeSn heterostructures and resulting quantum confinement effects for laser implementation. After material characterization, optical properties, including lasing, are probed via photoluminescence spectrometry. The quantum confinement effect in GeSn wells of different thicknesses is investigated. Theoretical calculations show strong quantum confinement to be undesirable past a certain level, as the very different effective masses of r and L electrons lead to a decrease of the L-to Γ-valley energy difference. A main limiting factor for lasing devices turns out to be the defective region at the interface to the Ge substrate due to the high lattice mismatch to GeSn. The use of buffer technology and subsequent pseudomorphic growth of multi-quantum-wells structures offers confinement of carriers in the active material, far from the misfit dislocations region. Performance is strongly boosted, as a reduction of lasing thresholds from 300 kW/cm2 for bulk devices to below 45 kW/cm2 in multi-quantum-well lasers is observed at low temperatures, with the reduction in threshold far outpacing the reduction in active gain material volume.
000849679 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000849679 588__ $$aDataset connected to CrossRef Conference
000849679 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, N.$$b1$$ufzj
000849679 7001_ $$0P:(DE-Juel1)166341$$aRainko, D.$$b2$$ufzj
000849679 7001_ $$0P:(DE-HGF)0$$aZabel, T.$$b3
000849679 7001_ $$0P:(DE-HGF)0$$aMarzban, B.$$b4
000849679 7001_ $$0P:(DE-HGF)0$$aIkonic, Z.$$b5
000849679 7001_ $$0P:(DE-HGF)0$$aZaumseil, P.$$b6
000849679 7001_ $$0P:(DE-HGF)0$$aCapellini, G.$$b7
000849679 7001_ $$0P:(DE-HGF)0$$aManti, S.$$b8
000849679 7001_ $$0P:(DE-HGF)0$$aWitzens, J.$$b9
000849679 7001_ $$0P:(DE-HGF)0$$aSigg, H.$$b10
000849679 7001_ $$0P:(DE-Juel1)125588$$aGrutzmacher, D.$$b11$$ufzj
000849679 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b12$$ufzj
000849679 773__ $$a10.1109/IEDM.2017.8268451
000849679 8564_ $$uhttps://juser.fz-juelich.de/record/849679/files/08268451.pdf$$yRestricted
000849679 8564_ $$uhttps://juser.fz-juelich.de/record/849679/files/08268451.gif?subformat=icon$$xicon$$yRestricted
000849679 8564_ $$uhttps://juser.fz-juelich.de/record/849679/files/08268451.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000849679 8564_ $$uhttps://juser.fz-juelich.de/record/849679/files/08268451.jpg?subformat=icon-180$$xicon-180$$yRestricted
000849679 8564_ $$uhttps://juser.fz-juelich.de/record/849679/files/08268451.jpg?subformat=icon-640$$xicon-640$$yRestricted
000849679 909CO $$ooai:juser.fz-juelich.de:849679$$pVDB
000849679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161180$$aForschungszentrum Jülich$$b0$$kFZJ
000849679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b1$$kFZJ
000849679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166341$$aForschungszentrum Jülich$$b2$$kFZJ
000849679 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b9$$kRWTH
000849679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b11$$kFZJ
000849679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b12$$kFZJ
000849679 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000849679 9141_ $$y2018
000849679 920__ $$lyes
000849679 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000849679 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000849679 980__ $$acontrib
000849679 980__ $$aVDB
000849679 980__ $$aI:(DE-Juel1)PGI-9-20110106
000849679 980__ $$aI:(DE-82)080009_20140620
000849679 980__ $$aUNRESTRICTED