001     849688
005     20210129234229.0
024 7 _ |a 10.1109/TED.2017.2742957
|2 doi
024 7 _ |a 0018-9383
|2 ISSN
024 7 _ |a 0096-2430
|2 ISSN
024 7 _ |a 0197-6370
|2 ISSN
024 7 _ |a 1557-9646
|2 ISSN
024 7 _ |a WOS:000413728700056
|2 WOS
037 _ _ |a FZJ-2018-03824
082 _ _ |a 620
100 1 _ |a Schulte-Braucks, Christian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Fabrication, Characterization, and Analysis of Ge/GeSn Heterojunction p-Type Tunnel Transistors
260 _ _ |a New York, NY
|c 2017
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531985372_31864
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a detailed study on fabrication and characterization of Ge/GeSn heterojunction p-type tunnel-field-effect-transistors (TFETs). Critical process modules as high-k stack and p-i-n diodes are addressed individually. As a result an ultrathin equivalent oxide thickness of 0.84 nm with an accumulation capacitance of 3 μF/cm2 was achieved on an extremely scaled tri-layer stack of GeSnOx/Al2O3/HfO2 deposited by atomic-layer deposition monitored in situ by spectroscopic ellipsometry. Combining these process modules, Ge/GeSn heterojunction pTFETs are fabricated and characterized to demonstrate the best in-class pTFET performance in the GeSn material system. The transfer characteristics of the TFETs show signatures of the trap-assisted thermal generation in the subthreshold regime which is explained by a modified Shockley- Read-Hall model. For the ON-state current, we used band-to-band tunneling models calculated using parameters from the density functional theory. We then use the calibrated model to project performance of GeSn pTFETs with increased Sn content (lower bandgap), reduced trap density and ultrathin body geometry. Both experimental and projected results are benchmarked against state-of-the art III-V (e.g., In0.65Ga0.35/GaAs0.4Sb0.6) pTFETs. We demonstrate the ability of GeSn to achieve superior performance with both high ON-current and sub-60 mV/decade switching benefiting from the small and direct bandgap for higher Sn contents.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pandey, Rahul
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sajjad, Redwan Noor
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Barth, Mike
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ghosh, Ram Krishna
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Grisafe, Ben
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sharma, Pankaj
|0 P:(DE-HGF)0
|b 6
700 1 _ |a von den Driesch, Nils
|0 P:(DE-Juel1)161247
|b 7
700 1 _ |a Vohra, Anurag
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rayner, Gilbert Bruce
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Loo, Roger
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 11
|u fzj
700 1 _ |a Buca, Dan Mihai
|0 P:(DE-Juel1)125569
|b 12
|u fzj
700 1 _ |a Yeh, Chih-Chieh
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Wu, Cheng-Hsien
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Tsai, Wilman
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Antoniadis, Dimitri A.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Datta, Suman
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1109/TED.2017.2742957
|g Vol. 64, no. 10, p. 4354 - 4362
|0 PERI:(DE-600)2028088-9
|n 10
|p 4354 - 4362
|t IEEE transactions on electron devices
|v 64
|y 2017
|x 1557-9646
856 4 _ |u https://juser.fz-juelich.de/record/849688/files/08024179.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849688/files/08024179.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849688/files/08024179.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849688/files/08024179.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849688/files/08024179.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:849688
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T ELECTRON DEV : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21