000849696 001__ 849696
000849696 005__ 20210129234233.0
000849696 0247_ $$2doi$$a10.1063/1.5021393
000849696 0247_ $$2ISSN$$a0021-8979
000849696 0247_ $$2ISSN$$a0148-6349
000849696 0247_ $$2ISSN$$a1089-7550
000849696 0247_ $$2Handle$$a2128/19435
000849696 0247_ $$2WOS$$aWOS:000435445500002
000849696 0247_ $$2altmetric$$aaltmetric:16066425
000849696 037__ $$aFZJ-2018-03832
000849696 082__ $$a530
000849696 1001_ $$0P:(DE-HGF)0$$aAttiaoui, Anis$$b0
000849696 245__ $$aExtreme IR absorption in group IV-SiGeSn core-shell nanowires
000849696 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2018
000849696 3367_ $$2DRIVER$$aarticle
000849696 3367_ $$2DataCite$$aOutput Types/Journal article
000849696 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1532939999_30854
000849696 3367_ $$2BibTeX$$aARTICLE
000849696 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849696 3367_ $$00$$2EndNote$$aJournal Article
000849696 520__ $$aSn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core−shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.
000849696 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000849696 588__ $$aDataset connected to CrossRef
000849696 7001_ $$0P:(DE-HGF)0$$aWirths, Stephan$$b1
000849696 7001_ $$0P:(DE-HGF)0$$aBlanchard-Dionne, André-Pierre$$b2
000849696 7001_ $$0P:(DE-HGF)0$$aMeunier, Michel$$b3
000849696 7001_ $$0P:(DE-HGF)0$$aHartmann, J. M.$$b4
000849696 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b5
000849696 7001_ $$0P:(DE-HGF)0$$aMoutanabbir, Oussama$$b6$$eCorresponding author
000849696 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.5021393$$gVol. 123, no. 22, p. 223102 -$$n22$$p223102 -$$tJournal of applied physics$$v123$$x1089-7550$$y2018
000849696 8564_ $$uhttps://juser.fz-juelich.de/record/849696/files/1.5021393.pdf$$yPublished on 2018-06-11. Available in OpenAccess from 2019-06-11.
000849696 8564_ $$uhttps://juser.fz-juelich.de/record/849696/files/1.5021393.gif?subformat=icon$$xicon$$yPublished on 2018-06-11. Available in OpenAccess from 2019-06-11.
000849696 8564_ $$uhttps://juser.fz-juelich.de/record/849696/files/1.5021393.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-06-11. Available in OpenAccess from 2019-06-11.
000849696 8564_ $$uhttps://juser.fz-juelich.de/record/849696/files/1.5021393.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-06-11. Available in OpenAccess from 2019-06-11.
000849696 8564_ $$uhttps://juser.fz-juelich.de/record/849696/files/1.5021393.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-06-11. Available in OpenAccess from 2019-06-11.
000849696 8564_ $$uhttps://juser.fz-juelich.de/record/849696/files/1.5021393.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-06-11. Available in OpenAccess from 2019-06-11.
000849696 909CO $$ooai:juser.fz-juelich.de:849696$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000849696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000849696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b5$$kFZJ
000849696 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000849696 9141_ $$y2018
000849696 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849696 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849696 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000849696 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2015
000849696 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849696 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849696 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849696 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849696 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849696 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849696 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849696 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000849696 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849696 920__ $$lyes
000849696 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000849696 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000849696 980__ $$ajournal
000849696 980__ $$aVDB
000849696 980__ $$aUNRESTRICTED
000849696 980__ $$aI:(DE-Juel1)PGI-9-20110106
000849696 980__ $$aI:(DE-82)080009_20140620
000849696 9801_ $$aFullTexts