000849722 001__ 849722 000849722 005__ 20240708133057.0 000849722 0247_ $$2doi$$a10.1016/j.ijhydene.2018.11.194 000849722 0247_ $$2ISSN$$a0360-3199 000849722 0247_ $$2ISSN$$a1879-3487 000849722 0247_ $$2WOS$$aWOS:000465056500009 000849722 037__ $$aFZJ-2018-03855 000849722 082__ $$a660 000849722 1001_ $$0P:(DE-Juel1)165160$$aWelder, Lara$$b0$$eCorresponding author 000849722 245__ $$aDesign and Evaluation of Hydrogen Electricity Reconversion Pathways in National Energy Systems Using Spatially and Temporally Resolved Energy System Optimization 000849722 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019 000849722 3367_ $$2DRIVER$$aarticle 000849722 3367_ $$2DataCite$$aOutput Types/Journal article 000849722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568028840_22201 000849722 3367_ $$2BibTeX$$aARTICLE 000849722 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000849722 3367_ $$00$$2EndNote$$aJournal Article 000849722 520__ $$aFor this study, a spatially and temporally resolved optimization model was used to investigate and economically evaluate pathways for using surplus electricity to cover positive residual loads by means of different technologies to reconvert hydrogen into electricity. The associated technology pathways consist of electrolyzers, salt caverns, hydrogen pipelines, power cables, and various technologies for reconversion into electricity. The investigations were conducted based on an energy scenario for 2050 in which surplus electricity from northern Germany is available to cover the electricity grid load in the federal state of North Rhine-Westphalia (NRW).A key finding of the pathway analysis is that NRW's electricity demand can be covered entirely by renewable energy sources in this scenario, which involves CO2 savings of 44.4 million tons of CO2/a in comparison to the positive residual load being covered from a conventional power plant fleet. The pathway involving CCGT (combined cycle gas turbines) as hydrogen reconversion option was identified as being the most cost effective (total investment: € 43.1 billion, electricity generation costs of reconversion: € 176/MWh).Large-scale hydrogen storage and reconversion as well as the use of the hydrogen infrastructure built for this purpose can make a meaningful contribution to the expansion of the electricity grid. However, for reasons of efficiency, substituting the electricity grid expansion entirely with hydrogen reconversion systems does not make sense from an economic standpoint. Furthermore, the hydrogen reconversion pathways evaluated, including large-scale storage, significantly contribute to the security of the energy supply and to secured power generation capacities. 000849722 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0 000849722 588__ $$aDataset connected to CrossRef 000849722 7001_ $$0P:(DE-Juel1)145405$$aStenzel, Peter$$b1 000849722 7001_ $$0P:(DE-Juel1)130471$$aMarkewitz, Peter$$b2 000849722 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b3 000849722 7001_ $$0P:(DE-Juel1)171300$$aEbersbach, Natalie$$b4 000849722 7001_ $$0P:(DE-Juel1)129845$$aEmonts, Bernd$$b5 000849722 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6 000849722 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.11.194$$gp. S0360319918338552$$n19$$p9594-9608$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019 000849722 909CO $$ooai:juser.fz-juelich.de:849722$$pVDB 000849722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165160$$aForschungszentrum Jülich$$b0$$kFZJ 000849722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145405$$aForschungszentrum Jülich$$b1$$kFZJ 000849722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130471$$aForschungszentrum Jülich$$b2$$kFZJ 000849722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b3$$kFZJ 000849722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171300$$aForschungszentrum Jülich$$b4$$kFZJ 000849722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129845$$aForschungszentrum Jülich$$b5$$kFZJ 000849722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ 000849722 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH 000849722 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0 000849722 9141_ $$y2019 000849722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015 000849722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000849722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000849722 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000849722 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000849722 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000849722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000849722 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000849722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000849722 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000849722 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000849722 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000849722 920__ $$lyes 000849722 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0 000849722 980__ $$ajournal 000849722 980__ $$aVDB 000849722 980__ $$aI:(DE-Juel1)IEK-3-20101013 000849722 980__ $$aUNRESTRICTED 000849722 981__ $$aI:(DE-Juel1)ICE-2-20101013