000849749 001__ 849749 000849749 005__ 20210129234246.0 000849749 0247_ $$2doi$$a10.1016/j.poly.2017.10.030 000849749 0247_ $$2ISSN$$a0277-5387 000849749 0247_ $$2ISSN$$a1873-3719 000849749 0247_ $$2WOS$$aWOS:000419409900030 000849749 0247_ $$2altmetric$$aaltmetric:29976268 000849749 037__ $$aFZJ-2018-03872 000849749 082__ $$a540 000849749 1001_ $$0P:(DE-HGF)0$$aSzklarz, P.$$b0 000849749 245__ $$aOrganic-inorganic hybrid crystals, (2,4,6-CH 3 PyH) 3 Sb 2 Cl 9 and (2,4,6-CH 3 PyH) 3 Bi 2 Cl 9 . Crystal structure characterization and tunneling of CH 3 groups studied by 1 H NMR and neutron spectroscopy 000849749 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018 000849749 3367_ $$2DRIVER$$aarticle 000849749 3367_ $$2DataCite$$aOutput Types/Journal article 000849749 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530861356_8781 000849749 3367_ $$2BibTeX$$aARTICLE 000849749 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000849749 3367_ $$00$$2EndNote$$aJournal Article 000849749 520__ $$aThe crystal structures of (2,4,6-CH3PyH)3Sb2Cl9 (TMPCA) and (2,4,6-CH3PyH)3Bi2Cl9 (TMPCB) (Py – pyridine) have been determined at 100 K by the single crystal X-ray diffraction method. TMPCA and TMPCB crystallize in the monoclinic C2/c and triclinic P1 polar space group, respectively. In both cases the asymmetric part is comprised of three nonequivalent 2,4,6-trimethylpyridinium cations and a discrete M2Cl93− anion. The Bi2Cl93− moiety forms a face-sharing bi-octahedron, whereas in a case of Sb2Cl93− we deal with two pyramids connected by a corner. The inelastic neutron scattering spectra (INS) were recorded for TMPCA at low temperatures (4–50 K). Two peaks on each side of the central elastic line have been observed at ca. 4.8 and 2.9 μeV, the high energy peak exhibits an excitation energy value equal to ca. 6 meV. For TMPCA and TMPCB the 1H NMR spin–lattice relaxation times, T1, have been measured in the temperature region 15–410 K. The flattening of the T1 (spin–lattice) vs. reciprocal temperature, 1/T, dependence between 30 K and 15 K indicates the incoherent tunneling effect of the methyl group being treated as the quantum rotor. The conclusions drawn from the 1H NMR results as regards to the tunneling of the CH3 groups in the pyridinium cations are consistent with the tunneling peaks observed in the INS spectra. 000849749 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0 000849749 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1 000849749 588__ $$aDataset connected to CrossRef 000849749 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0 000849749 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x1 000849749 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0 000849749 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0 000849749 7001_ $$0P:(DE-HGF)0$$aJakubas, R.$$b1 000849749 7001_ $$0P:(DE-HGF)0$$aPiecha-Bisiorek, A.$$b2 000849749 7001_ $$0P:(DE-HGF)0$$aBator, G.$$b3$$eCorresponding author 000849749 7001_ $$0P:(DE-HGF)0$$aChański, M.$$b4 000849749 7001_ $$0P:(DE-HGF)0$$aMedycki, W.$$b5 000849749 7001_ $$0P:(DE-Juel1)131044$$aWuttke, Joachim$$b6 000849749 773__ $$0PERI:(DE-600)2000326-2$$a10.1016/j.poly.2017.10.030$$gVol. 139, p. 249 - 256$$p249 - 256$$tPolyhedron$$v139$$x0277-5387$$y2018 000849749 8564_ $$uhttps://juser.fz-juelich.de/record/849749/files/1-s2.0-S0277538717306927-main.pdf$$yRestricted 000849749 8564_ $$uhttps://juser.fz-juelich.de/record/849749/files/1-s2.0-S0277538717306927-main.gif?subformat=icon$$xicon$$yRestricted 000849749 8564_ $$uhttps://juser.fz-juelich.de/record/849749/files/1-s2.0-S0277538717306927-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000849749 8564_ $$uhttps://juser.fz-juelich.de/record/849749/files/1-s2.0-S0277538717306927-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000849749 8564_ $$uhttps://juser.fz-juelich.de/record/849749/files/1-s2.0-S0277538717306927-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000849749 909CO $$ooai:juser.fz-juelich.de:849749$$pVDB$$pVDB:MLZ 000849749 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131044$$aForschungszentrum Jülich$$b6$$kFZJ 000849749 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0 000849749 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1 000849749 9141_ $$y2018 000849749 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000849749 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPOLYHEDRON : 2015 000849749 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000849749 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000849749 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000849749 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000849749 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000849749 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000849749 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000849749 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000849749 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000849749 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000849749 920__ $$lyes 000849749 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0 000849749 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1 000849749 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2 000849749 980__ $$ajournal 000849749 980__ $$aVDB 000849749 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000849749 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000849749 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000849749 980__ $$aUNRESTRICTED