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HIGHLIGHTS:

e Identified meta-anal in nptworks associated with diverse problem solving tasks

e Ashared mana attentional network supports generalized problem solving

e Problem solyi thin content areas engages representationally specific sub-networks

e Proble les on cooperation between sub-network and whole-brain systems
ABSTRA
Probl solying is a complex skill engaging multi-stepped reasoning processes to find unknown
oy, The breadth of real-world contexts requiring problem solving is mirrored by a similarly broad,

yet\unfocused neuroimaging literature, and the domain-general or context-specific brain networks
associated with problem solving are not well understood. To more fully characterize those brain
networks, we performed activation likelihood estimation meta-analysis on 280 neuroimaging problem
solving experiments reporting 3,166 foci from 1,919 individuals across 131 papers. The general map of

problem solving revealed broad fronto-cingulo-parietal convergence, regions similarly identified when



considering separate mathematical, verbal, and visuospatial problem solving domain-specific analyses.
Conjunction analysis revealed a common network supporting problem solving across diverse contexts,
and difference maps distinguished functionally-selective sub-networks specific to task type. Our results

suggest cooperation between representationally specialized sub-network and whole-brain systems

provide a neural basis for problem solving, with the core network contributing general ose
resources to perform cognitive operations and manage problem demand. Further characte§za of
cross-network dynamics could inform neuroeducational studies on problem solving skill ment.

KEYWORDS: problem solving; reasoning; cognitive control; functional ne %eta-analysis;
activation likelihood estimation (ALE); domain-generality; domain-specificity

1. INTRODUCTION

Problem solving has been investigated across human and ani m for decades; it is a process that

is central to numerous everyday tasks involving the executionof a COmplex, multi-step sequence of goal-

oriented objectives. In humans, problem solving has d to quantify general intelligence (Jung

chafacterize neurocognitive or developmental disorders

(Kodituwakku, 2009; Ozonoff an 9; Sachdev et al., 2014), and has been investigated across

Sternberg, 2003; Si nd Newell, 1971), and cognitive neuroscience (Fink et al., 2009; Unterrainer

and Owen, 200

Given this giniversal?and multidisciplinary interest in problem solving, numerous definitions of the
constifict ha en articulated by experts from different domains with varying theoretical knowledge

ses. present study, we adopt the definition of a problem as a “situation in which you are trying
to\yfacWsome goal, and must find a means for getting there” (Chi & Glaser, 1985, pp. 229). The act of
prodlem solving then involves identifying and/or performing critical thinking processes related to
evaluating the problem, planning or sequencing actions to solve it, and executing operations that
conform to some rule set (e.g., semantic, algebraic, logical, mechanical, or other delimiting frameworks)
to arrive at a correct, or sometimes most appropriate, previously unknown solution. Within this

operational definition, problem solving can be considered as a sequential and/or parallel orchestration



of a series of integrative cognitive maneuvers wherein solutions are systematically, but not necessarily
immediately, derived. Such framing acknowledges that problem solving encompasses iterative
algorithmic steps, as well as exploratory and innovative processes wherein solution paths draw on
creativity and insight. It is of note that an important component of solving a problem may be in the

initial characterization of the problem itself, a step in which one must identify the rule set impied or

specific while simultaneously grounded in a common framework that is context-ind nt. Thus,
problem solving-related processes are dynamic, frequently involve the confluence
solving can range from formative human experiences such as a toddler intggacting h environmental
affordances as objects and tools are tested to replicate observed @unciior™to more technical or
abstract undertakings such as scientists drawing on experiment, techWNg nd knowledge to address

unresolved questions from their discipline.

In human functional neuroimaging research, numerous and Wyverse experimental tasks have been used

to elicit cognitive processes viewed as central to pro ing. Various neuroimaging studies have
considered problem solving from the perspectiv thematical calculation (e.g., Dehaene et al.,
1999), deductive or inductive reasoning (e.g., 7), insight solution generation (e.g., Luo and Niki,

conducted. Thus, i known if there exists a constellation of common brain regions supporting

general proble respective of topic, scope, or discipline, or if problem solving is a relatively
specific megftal activiyf that instead relies more strongly on particular neural correlates most relevant to
the prgblem cific context and features. By addressing this question, we may be better able to
charadQgize#he nature of problem solving across its many interdisciplinary conceptions in the service of

fa g improvements to strategies promoting problem solving skill development.

While problem solving remains a relatively equivocally defined construct, particularly within the
neuroimaging literature, initial insight into the neural substrates of many of the constituent processes
noted above may be gleaned from the executive function domain. For example, Minzenberg et al. (2009)

and Niendam et al. (2012) characterized executive functions as those mental processes that direct,



regulate, and integrate goal-oriented behavior. Cognitive control is a term often used synonymously
with, or to emphasize the regulatory aspects of, executive function wherein many cognitive processes
together dynamically manage information to guide actions and achieve a common purpose (Miller,
2000). This ‘managerial system’ responsible for directing necessarily coherent, purposeful, and stepwise
actions is likely a central element across many, if not all, forms of problem solving. Yet, it rg&ains
unclear which of the neural correlates of cognitive control are also essential for problem sfvingyand

whether a common network exists linked with problem solving across contexts.

Brain regions associated with executive function have been relatively well studied oft llectively
referred to as the Central Executive Network (CEN), and typically reveal fu n connected inter-
and intra-hemispheric regions across association cortices. Early perspgct@es on/ executive function
attempted to map specific and theoretically distinct cognitive proc s% individual brain regions

(Luria, 1966; Shallice, 1988). However, as experimental technigues I | deepened the scientific

understanding of cognitive control, consensus shifted away frof si one-to-one function-structure

mappings and towards a more system-based perspective Wherein whole-brain distributed networks

20007 non and Uddin, 2010). Goal-oriented,

complex cognition is maintained by such multir alyinteractions (Cocchi et al., 2013), and intra-

dorsolateral prefrontal cortex ( ), ! dal prefrontal cortex (mPFC), and posterior parietal cortex

(PPC) are together frequent ateM across executive function paradigms such as working memory

n-back tasks (Owen et 2 . Curtis, 2003), attentional control tasks including go/no-go and Stroop

paradigms (Cieslik, nd others such as the oddball vigilance task, tower maze planning task, and

Wisconsin car: ) ility task (Lie et al., 2006; Linden, 1999; Unterrainer and Owen, 2006).

nning, and vigilance paradigms. Those authors identified a cross-domain cognitive control
sy¥emZincluding dIPFC, frontopolar cortex, orbitofrontal cortex, anterior cingulate cortex (ACC),
superior and inferior parietal and occipito-temporal cortex, cerebellum, and limbic areas such as the
caudate, putamen, and thalamus. This so-called superordinate cognitive control system constituted a
shared network supporting various disparate paradigm activations, and thus suggested that multiple

executive functions are supported across a common set of fronto-cingulo-limbic-parietal brain regions.



Similar observations of common prefrontal, insular, and parietal brain regions responsible for a diversity
of goal-oriented tasks have also been demonstrated across attentional processes (Duncan, 2006) and
show enhanced involvement when task demands are increased, regardless the type of task performed
(Duncan and Owen, 2000; Fedorenko et al., 2013). This system has been termed the multiple demand
(MD) network because of its high flexibility across contexts and has been argued to be critically ipalved

in task control, attentional focusing, managing cognitive load, and may play a central role in RteMNgcing

with different brain systems that accomplish sub-tasks or specific cognitive operations ructured
mental operations (Duncan, 2013, 2010). Given the close ties between probl nd this
multitude of diverse cognitive functions, a reasonable working hypothesis is r network is
associated with problem solving across diverse representational domains.

While a collection of brain regions commonly activated across prob tasks may be indicative

of a supervisory control network, there is also evidence for ultaqeds domain-specific regional

involvement during problem solving. Neural findings from individal lem solving studies support the

notion of a supervisory control network that also subtends fOgctionally specific regional interactions. For

example, in an investigation of math and word proble , Newman and others (2011) identified a

common set of CEN regions, including superior p al bule (SPL) and horizontal intraparietal sulcus

(IPS), that supported both representational m es of problem solving. In addition to this common

%‘
-

word problems. These resuhMgligh® the importance of not only a common network for problem

roblem solving network, they also o distinct activations across Broca’s and Wernicke’s areas in
Yy

word but not number problems /Ahd ied enhanced activation in IPS specific to number but not
solving, but also the ar and distinctive interaction of regions specific to problem solving

representation.

To date, res m Pne wide range of neuroimaging problem solving paradigms have not been

collectively@assessqgd” to identify common and differential brain activation patterns across problem

solving repre ational contexts and distinct domains. To this end, we first identified a set of published
wfo experiments that utilized high-level critical thinking and reasoning tasks. If the tasks were
coWsistént with our operational definition of problem solving, we selected related experimental
contrasts according to inclusion criteria. These tasks involved healthy adults answering novel questions
by way of generating or verifying solutions. We then applied a quantitative, coordinate-based meta-
analysis method to comprehensively synthesize this literature corpus with the purpose of identifying the

neural networks associated with problem solving. Using this methodology, we sought to: (1) determine



if convergent neurobiological substrates are present across the diversity of problem solving tasks; and
conversely, (2) identify those brain regions exhibiting consistent functional specificity within distinct

representation domains.

2. METHODS
To identify consistent and dissociable brain activation patterns linked with probl ing, “we
conducted a series of Activation Likelihood Estimation (ALE) meta-analyses (Turkeltaub e 2; Laird

et al., 2005; Eickhoff et al., 2009; 2012; Turkeltaub et al., 2012) delineating co Its reported

within and across distinct representational categories.
2.1. Literature Search and Experiment Selection Criteria

We began by establishing our definition of problem solving, i endeNt of any literature searches or

reviews. Then, a search to compile a comprehensive se r-reviewed functional neuroimaging

studies investigating problem solving published in English bet™gen January 1st 1997 and March 14, 2015

was performed across multiple literature indexigg sex#cey including PubMed (www.pubmed.com),

Web of Science (www.webofknowledge.com), an Scholar (www.scholar.google.com). Searches

riteria were examined and appropriate studies not previously

| of potential papers for inclusion. To avoid bias introduced by the

studief were onably described by the two-part problem solving definition we had adopted (i.e., first

ving , followed by a need to figure out a way to reach it). Once the set of problem solving tasks

isolated one or more of the cognitive processes central to the problem solving task. Of those identified,
we selected only those contrasts reporting either blood oxygen level dependent (BOLD) or regional
cerebral blood flow (rCBF) signal increases; results associated with BOLD or rCBF decreases were
excluded. Group-level effects in healthy adult individuals were targeted, while disease-, age-, and

gender-related group comparisons were excluded. Experiments were further filtered to include only



those that reported task-related increases as stereotactic coordinate results in either Talairach or
Montreal Neurological Institute (MNI) standardized space. The final set of experiments was constrained

to include only whole-brain analyses and exclude region of interest (ROI) results.

Three main paradigm groupings emerged as separate problem solving domains within the neuroimaging

literature: tasks in which participants solved computational or mathematical problems, languagg-based
or verbal problems, or picture-based or visuospatial problems. Representational domains
by the stimulus modality used: mathematical problems involved number manipulation&er® problems
presented questions with sentence, word, or letter stimuli, and visuospatial probl inv
or spatial tasks. Within these representational sets, five distinct contrast t e Included in the
meta-analyses: contrasts in which (1) a baseline condition was subtract @roblem solving task

(i.e., problem solving > baseline), (2) problem solving questions wege trically compared across

pictorial

varying difficulty, abstraction, or complexity (e.g., complex probem soWing > simple problem solving),
(3) untrained, previously unseen, and novel problems were 3Iv nd contrasted with previously
memorized or solved problems of the same type (i.e., unt\ined problem solving > trained problem

solving), (4) problem solving was compared across diffe sets or representational modalities (i.e.,

problem solving type 1 > problem solving type 2; [tiplication problems > addition problems or

word problems > number problems), or (5 ct and sequential problem solving phases were

contrasted with each other (e.g., pro# olvirig late phase > problem solving early phase). Several
studies used problem solving t e differences between healthy controls and either patient
populations or populations %ually gifted individuals (e.g., mathematical prodigies or high-1Q
individuals). Experiment &I ded from these studies if within-group results for healthy controls

were separately re 7 without any group interaction effects or comparison with an experimental

group.

2.2. Acti a@i ood Estimation

Stere@actic goordinates were extracted from the identified set of problem solving contrasts. To reduce

ity between MNI and Talairach coordinates (Laird et al., 2010), foci originally reported in Talairach
spXce were transformed into MNI space using the tal2icom algorithm (Lancaster, 2007). A series of
activation likelihood estimation meta-analyses was performed in the MATLAB environment to assess
concordance across studies and within each problem solving representational domain using the revised
non-additive ALE algorithm (Laird et al., 2005; Eickhoff et al., 2009; Turkeltaub et al., 2012). This

random-effects approach models activation foci as three-dimensional Gaussian probability distributions



whose widths reflect variances in experimental sample size and uncertainty inherent to spatial
normalization. The ALE algorithm first computes a set of modeled activation (MA) maps by selecting the
maximum probability associated with any one Gaussian within each experiment (Turkeltaub et al.,
2012). This method was employed to alleviate artificial conflation of MA values due to within-
experiment coordinate proximity and thus limits the maximum contribution any single experim can

have on the overall ALE results. After the within-experiment activations were modeled, voxel¥vis®&gocal

union was anatomically constrained by a grey matter mask based on the ICBM tjgs ility maps of

Evans et al. (1994). Statistical significance within this so-called ALE map waf determified by comparing

the distribution of ALE scores to a null-distribution modeled by 10,0 lons of random data,

selected from the gray matter template and the unio alues was computed to form the

each containing identical characteristics to those of the actual experifden .g., simulated subject and
foci numbers). Computationally, foci from the dataset W§ r&alaggd with coordinates randomly
ot

empirically derived null-distribution used to test the n sis of randomly distributed activations.

Then, above-chance clustering between experim wa assessed by computing P-values given by the

proportion of ALE scores equal to or gr those obtained under the null-distribution. A
correction for multiple comparisons wassiggplemeMted by using a voxel-level threshold of P < 0.001, and
then ALE results were family-wi E) corrected at a cluster extent threshold of P < 0.05

(Eickhoff et al., 2017).

First, to identify com iyation patterns across problem solving, coordinate results from all

representational d mathematical, verbal, and visuospatial domains) were pooled and
assessed for ¢ ¥ he resulting ‘global network’ was agnostic to variants in problem solving
type and therefore Wseful in evaluating whether a content-general problem solving meta-analytic
netw co identified. Here, and in following sections, we refer to the term ‘meta-analytic
netwoRg (oy/simply ‘network’) as a collection of brain regions that together represent the common
a patterns resulting from meta-analytic results. Because clusters revealed by the global network
neel not be similarly observable across sub-domains, we performed follow-up characterizations of
within-domain activation patterns to resolve context-relevant networks. To investigate which brain
regions were consistently activated within content-specific tasks, we delineated experiments by

representational domain and separately assessed coordinate convergence across mathematical, verbal,

and visuospatial problem solving variants. We then inspected these within-domain ALE maps for three-



way conjunctions to identify overlap indicative of common and convergent activation among all types of
problem solving (i.e., a core network). Specifically, we conducted a conservative minimum statistic
conjunction analysis (Nichols, 2005) to identify significant voxels commonly present across all domain-
specific problem solving ALE maps. Next, to decipher the functional role of this core network and
identify specific cognitive processes contributing to problem solving in general, we performed funmional
decoding (which is a statistical approach used to determine psychologically-linked terms giverob®yved
brain activation patterns) on the resulting conjunction map (Poldrack, 2011). To d we fit a

Generalized Correspondence Latent Dirichlet Allocation (GC-LDA; Rubin et al., 2016920 del with

200 topics to the Neurosynth literature corpus (Yarkoni et al., 2011). The GC-L ociates each

topic with a probability distribution across terms from article abstracts and al distribution (in
this case as a bilateral pair of Gaussian distributions) across voxels in . These topics reflect

words and foci which frequently co-occur across studies in the litgratu acilitate distinguishing the

conceptual structure associated with terms that can be impr&is riously defined across studies.
Next, we fed the conjunction map into the decodin , which used the P(topic|voxel)
distribution estimated by the topic model to estimat i¥map). Finally, we expanded the topic

weights to word weights by computing the dot d between the P(topic|map) vector and the

P(word|topic) distribution estimated by th

assessing the conj , using the minimum statistic approach, across the difference maps. For

example, to is n activity specifically associated with mathematical problem solving, we first
calculated the contr¥¥ts of Mathematical — Verbal problem solving and Mathematical — Visuospatial
probl SO We then computed the conjunction between these two differences (i.e.,
[Math®gatigh! — Verbal] N [Mathematical — Visuospatial]), which isolated brain regions uniquely
C ing to mathematical problem solving separated from verbal and visuospatial modalities. Similar
con¥inction analyses were performed for verbal ([Verbal — Mathematicall N [Verbal — Visuospatial]) and
visuospatial specific contrasts ([Visuospatial — Mathematical] N [Visuospatial — Verbal]). This method for
computing the contrasts of multiple ALE images determines which clusters are statistically selective in
one ALE map from those regions shared with all other ALE maps. Thus, we assessed domain specificity

by examining if one task domain demonstrated greater convergence compared to both of the other task



domains. All contrast analyses were generated with voxel-wise thresholding at P < 0.01 (false-discovery
rate corrected) using 250 mm? minimum cluster volumes and 10,000 permutations. The anatomical

locations of the observed clusters are labeled and reported in MNI space.

Lastly, we conducted a meta-analysis in which we considered the role of cognitive demand within
problem solving. Our approach in this analysis was similar to that previously adopted by Dungan and
Owen (2000) in their observation of the multiple demand network. We selected contrasts, thisgpal
meta-analysis that compared high to low demands across problem tasks (i.e. Complex €Si Problem
Solving) that were otherwise identical. In this way, we assessed convergence acro an different
problem solving experiments, each of which isolated the specific neural un %nsociated with
problem difficulty while still controlling for additional factors potentially ifpacting demand (e.g. task
type). %

3. RESULTS

3.1. Literature Search Results

The results of the problem solving literature searc mathematical, verbal, and visuospatial
domains are described in detail below; the spec orprasts are detailed in Supplementary Table 1,
along with the numbers of foci and subjects, mulus, contrast classification, and neuroimaging
modality.

3.1.1. Mathematical Problem Sg#ing P igms

Numerical calculation wa mo idely studied representational domain within the neuroimaging
problem solving liter Oveyrll, the literature search identified 99 mathematical problem solving
contrasts, yieldi 04 tivation foci from 41 published papers. A total of 65 of these contrasts

compared pr, Iyhg with a rest or low-level baseline condition, 21 contrasted two different forms

roblem solving, and 13 compared complex versus simple conditions. Although
operald taskg took varying forms, basic paradigm structure involved mental binary operations (i.e.,

ition, traction, multiplication, division) being performed on integer Arabic numerals to arrive at
single valued answers. A 2011 meta-analysis on number sense and calculation (Arsalidou and Taylor,
2011) previously identified several mathematical problem solving studies relevant to the investigation at
hand. Thus, these experiments were included in this meta-analysis, along with additional neuroimaging
studies matching our inclusion criteria. Included paradigms are further described below and in

Supplementary Table 1a.



Number Operation Tasks

The majority of included calculation paradigms involved mental quantity manipulations of either one- or
two-digit Arabic numerals so as to generate, select, or verify solutions to mathematical expressions (e.g.,
“6 + 8” or “12 x 55”). Most number operation tasks presented two numeric values on which a single
binary operation was performed. However, tasks of this class also included operand manipulggons on
multi-number lists. Participants responded to numerical and symbolic stimuli by either ov SpEMNE
solutions, internally identifying them, or using a button press to select the correct vgige a list of
answer choices. Calculation verification paradigms presented participants with eriql equations
such as “5 — 13 = -8” and participants decided if the statements were tru M. Most numerical
operand paradigms utilized visual stimuli of Arabic digits and/or bigar mathfematical operands,
however some tasks also presented subjects with Roman numerals, abic numerals, or English

words of Arabic numerals.

Baseline or control conditions for operand tasks took several forms including identifying,

matching, or comparing target number values. In ideggificati onditions, participants overtly recited

values or pressed a button when a target nu erPword, or symbol appeared on a screen.

Baseline matching conditions instructed p select an identical number to a previously
presented stimulus. In comparison tasks, particants viewed number pairs and identified the digit of

sometimes used to measure numeric distance or number

larger value. Number comparison, @
sense, did not fit our cognitiveld deynarWfe definition for problem solving; thus, we considered these

tasks as appropriate high-le€l con onditions for calculation tasks (i.e., Calculation > Comparison).

The present meta-a addiponally included high-level contrasts such as Multiplication > Addition,

Complex > Simp Problems > Word Problems, or Exact Calculation > Approximation. While

these contr n were themselves instances of problem solving, their cognitive subtractions
yielded inatefresults specific to characteristics central in mathematical problem solving (i.e., in the
respelive abpve examples these were operand type, difficulty level, representation modality, solution

d). Because we sought to include results from multiple varieties of questions and across
chracteristics, we likewise included reverse contrasts such as Addition > Multiplication and so on.
Although these reverse contrasts yielded disjoint sets of activation patterns, we considered each
contrast as an independent experiment targeting specific qualities inherent to mathematical problem
solving. Because both sets of coordinate results highlighted specific characteristics within the general

umbrella of mathematical problem solving, they were included. The literature search produced 80 (out

10



of 99 total mathematical problem solving) number operations contrasts associated with 776 activation

foci from 30 papers for inclusion in the meta-analysis.

Paced Auditory/Visual Serial Addition Test

The paced addition serial attention test (PASAT), modified PASAT (mPASAT), or paced visual serial

attention test (PVSAT) are neuropsychological tests widely used to study cognitive im ents,
attention, information processing speed, and working memory (Tombaugh, 2006). priny¥ry
procedure in this paradigm involves mentally and serially adding digits together/Qgrti ts are

presented with either an auditory (PASAT or mPASAT) or a visual (PVSAT) sequg of nJPhbers, with
individual digits ranging between 0 and 9, and are instructed to mentally’add t irst and second
numbers. This sum is then mentally added to the third value, and so op4 he/Asum of digits equals

10. The participant indicates the sum equals 10 with a button pr ary gesture and begins the

based problem solving paradigm and include
literature search yielded 7 (out of '9@
included 138 activation foci frong6 e

Additional Mathematical

these tasks in the mathematical meta-analysis. The

athematical problem solving) PA/VSAT contrasts, which

Several neuroimagi digms targeted mathematical problem solving processes employing less

common numb r h¥ased stimuli. Such tasks included percent estimation problems (“what is 44

percent of 0?”; Ve raman et al., 2006), equation-based algebraic or calculus problem manipulations

(Krue 08; Newman et al.,, 2011), or other algorithm-based problems such as pyramid
probléQgs (Dghazer et al., 2005) or number bisection problems (Wood et al., 2008). In pyramid problems
p ts viewed non-standard operation expressions such as 5453 and were trained to perform the
corhesponding “$” algorithm (in this example, 54+53+52 where 54 is the ‘base number’ and 3 is the
‘addition span number’). Number bisection problems cued participants with ordered number triplets
such as (44,62,87) and participants determined if the middle value was also the mean of the flanking

numbers. The literature search yielded 12 additional (out of 99 total) mathematical contrasts reporting

130 activation foci from 5 papers for inclusion in the meta-analysis.

11



3.1.2. Verbal Problem Solving Paradigms

Neuroimaging problem solving paradigms in the verbal domain asked questions via letter, word, or
sentence stimuli, and participants used logic or content knowledge to comprehend, generate, or identify

solutions. Overall, the literature search identified 93 verbal problem solving contrasts, which reported

verbal domain, 22 contrasted differing types of verbal problem solving, 7 identified actjgti®at distinct

problem solving phases by contrasting distinct stages in the problem solving proce d
untrained to trained verbal problem solving. Paradigms in this categor | eductive and
inductive reasoning sentences, riddles and insight questions, paragraph-bgse@wordproblems, and word

or letter string analogy sets. These paradigms displayed diversity in s reasoning methods used,

and participants responded via button press to either select frop€a set\gf 3lution options, indicate if a

given problem was logical or illogical, or if they had been succeMfu le to arrive at a solution to the
verbal problem before the time expired and an answer was NWvealed. Included paradigms are described

below and in Supplementary Table 1b.

Deductive Reasoning Paradigms

Deduction is a logical process in igh spéeyific conclusions are inferred from general rules.

Neuroimaging paradigms typical b mechanisms supporting deductive reasoning across

argument types. In @ parafigms, subjects considered sentence- or letter-based arguments and

determined if a give sion logically followed from the premises. Participants were instructed to
respond to ti pressing a button to indicate if the argument was valid or invalid. Deductive
reasoni trol gonditions typically asked logic questions whose answers were trivially false (e.g., “if A

., 2011) of deductive reasoning tasks served as an initial model for studies included in our
language-based problem solving analysis. We included appropriate studies from this deduction meta-

analysis and updated and extended the corpus of deductive linguistic papers for the present study.

While the majority of included verbal deductive reasoning paradigms took one of the conditional forms
described above, several paradigms also included in this category presented linguistically challenging

word problems that required logical deduction. For example, in Newman et al. (2011) participants

12



viewed statements such as, “The day before my favorite day is two days after Thursday”, and then
determined which day was the favorite. Another study (Kroger et al., 2008) presented word problems
such as, “There are five students in a room. Three or more of these students are joggers. Three or more

of these students are writers. Three or more of these students are dancers. Does it follow that at least

based. The literature search produced 60 (out of 93 total verbal problem solvj

contrasts associated with 688 activation foci published in 25 papers for inclugon in the’!meta-analysis.

Verbal Inductive/Probabilistic Reasoning Paradigms

While deductive reasoning is used to make claims on specifi rmajion by applying general rules,

inductive reasoning is a procedure by which broad rules rred from particular instances (e.g.,

I”

“Mike is a basketball player, Mike is tall. All basketb re tall.”). While counterexamples can

disprove inductive reasoning statements, they fully logically proved. Thus, in inductive

teeth; All felines have 32
analysis presented
example, in t al. (2004), participants viewed a serial presentation of positive and negative
words. ere Jold these words had been drawn from a survey that received a positive to negative
respofse ratip of either 60:40 or 40:60. Participants were asked to choose which survey the viewed

had likely been drawn from. The literature search yielded 5 (out of 93 total verbal problem
sol\ing) inductive reasoning contrasts that included 34 activation foci from 4 papers for inclusion in the

meta-analysis.

Verbal Analogy Problems

Analogical reasoning relies on the ability to draw conclusions about relationships from given information

and/or by using background knowledge. Typical analogy problems across the neuroimaging literature,

13



such as those in Luo et al. (2003), present participants with dual word pairs and subjects determine if
these formed analogous or general semantically related sets (e.g., analogy: “drummer, band” = “soldier,
army”; semantic: “refrigerator, kitchen” = “lounge, room”). Other linguistic analogy tasks were
sentence-based and asked participants to complete phrases such as, “black is to white and high is to

....2” (Wendelken et al.,, 2008). We also included analogy tasks in this meta-analysis that ipsalved

semantic word retrieval (Wagner et al., 2001) in which participants viewed a cue word and tengget

“cue = rain; targets = pillow, puddle, book, sneaker”; weakly related: “cue = candlg:
halo, exists, bald”); subjects selected the target word most related to the cue.

Analogy tasks sometimes used purely letter-based representations; for a@ eake and Hansen
(2005) participants viewed two successive non-word letters str'n% revealed an order- or
alphabetic-based transformation rule (e.g., ird implies dri). S cts Wer® then shown a third letter

string and choose or generated the letter string that best foll

words that were either unrelated, weakly related, or strongly related to the cue (e.g., related:
& design,

transformation rule (e.g., ykw
implies ?). Many so-called “fluid analogy” problems, such as Rthis example, required both semantic and

content knowledge to choose the most plausiple " A similar paradigm, drawn from the

Educational Testing Service Kit of Factor Referen Conitive Sets (Ekstrom et al., 1976), presented

participants with non-word letter strings wi e common alphabetic or translational rule, and

participants were asked to identify t one’out” from a set of choices (Duncan et al., 2000). The

literature search produced 9 (ou 9 verbal problem solving) analogy contrasts that reported a
total of 78 activation foci fro er

Insight Problem Solvin
Insight questiongbargdi are language-based paradigms that targeted the “aha” moment within

n
a

problem sol r#quently take the form of sentence- or character-based riddle problems. Riddle

solving es cgreful consideration of phrasings and/or semantic indicators such as syntactic or

logoglphic sjructure. Neuroimaging riddle paradigms, such as in (Luo and Niki, 2003), used problems
IV hat can move heavy logs, but cannot move a small nail?” (solution: “a river”). Other riddle-like
paNadigms relied on word play within Chinese character idioms (or “Chengyu”) whose figurative
meanings are often distinct from their literal ones (e.g., an English-language idiom of similar kind is “kick
the bucket”, which has the figurative meaning “to die”; Zhang, 2012). The goal of these paradigms is to

identify the expression’s metaphoric meaning by decomposing constituent characters into meaningful

semantic chunks. For example, in Qju et al. (2010), participants were given phrases such as A5 IR i1,
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which translates to “having eyes but being unable to see”, and were asked to derive the idiom’s
underlying meaning. In this case, the answer is & (which means “blind”), and is derived by combining
the phonetic symbol 1= with the semantic radical H that appears as a constituent chunk in the Chengyu
component . Insight paradigms based on chunk decomposition of logograms took multiple but similar

forms in the neuroimaging literature and appropriate studies were included in this meta-analysi

Other neuroimaging paradigms that study insight are anagrams puzzles in which letters fr rds hBve
been scrambled beyond the point of recognition. Participants, such as those in Aziz-Z Q(ZOOQ),
were presented with these scrambled words and are asked to determine th al rd. Several
additional non-standard insight problem solving paradigms were identified af appropNpte for this meta-

analysis; one such study (Luo et al., 2013) considered insight in scientifig?P¥o Iving specifically. In

that study, subjects were presented with paragraph-based re orld sfientific and engineering

guestions, some of which contained explicit hints towards a on pgth. Participants were asked to
determine solutions to these scientific/engineering quest; insight moments were facilitated by
heuristic use. The literature search yielded 19 (out of @3 totaNgerbal problem solving) insight contrasts

reporting 215 activation foci from 12 papers.

3.1.3. Visuospatial Problem Solving Paradi
)

problem solving contras reported 1094 activation foci published in 50 papers. A total of 47 of

In our third and final representa domdin, we identified neuroimaging experiments using

visuospatial problem solving t logic or relational reasoning by pattern identification,

visualization, induction, and

these contrasts tog eneral form of visuospatial problem solving versus a baseline condition, 14
considered co simple visuospatial problem solving, 16 contrasted two types of visuospatial
problem sofving, 10 ¥6ntrasted untrained to trained visuospatial problem solving, and one contrasted
probl sol ross different phases. The visual problems sets identified as part of this literature
searc rieg/ significantly across studies and many experiments in this representational domain utilized
n k paradigms. In all included visuospatial problem solving paradigms, participants used
rea®oning to respond to picture stimuli. Included paradigms are described below and in Supplementary

Table 1c.

Visuospatial Fluid Reasoning Tasks
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“_n,

Fluid reasoning (sometimes called fluid intelligence, “Spearman's g”, or simply “Gf” or “g”; Spearman,
1928) is the ability to reason in novel situations, independent of prior knowledge or culturally embedded
context (Ferrer et al., 2009). Two canonical neuropsychological paradigms frequently used to investigate
the visuospatial component of fluid reasoning are the Raven’s Progressive Matrices (RPM; Raven, 2000)
and the Cattell’s Culture Fair Test (Cattell, 1973). In the former, participants view 3 x 3 picturgagrids

whose images progress horizontally and/or vertically by an analogical rule. Participants must §et ine

the rule(s) of progression and, from a set of options, choose the image that complet inal grid

entry. Similarly, the Culture Fair Test presents a set of drawings sharing a relationgl ru icipants

identify this rule and select either the “odd one out” from the image set, or chg0 itional image

that follows similarly. Each paradigm contains problems that parametrically fincreasg i complexity level
(“low” to “high” g) and simple problems are often used as control c€ndiii more complex fluid

reasoning questions.

Variations of these two visuospatial reasoning tasks have been 0ss the literature and were also

included in this meta-analysis. The Nagliri Nonverbal Intelligégce Test (Kalbfleisch et al., 2007), the Fluid

Intelligence Test (Ebisch et al., 2012), the Geomejric peal Reasoning Task (Preusse et al., 2011),

and the Nonverbal Reasoning Task (Hampshire 011) all require subject’s use of relational

integration abilities to identify visual pattern- rules and make rule-based judgments on images.

The literature search produced 19 (o

associated with 200 activation fog#

Visual Analogy Problems

Similar to fluid reas paragms, visual analogy problems use picture-based stimuli to depict a

et. In these types of tasks, participants viewed dual shape or image pairs

(with A:B cture) that were related via pattern, color, geometric form, or physical

appear ants selected the answer that followed the visual analogical rule or indicated if an
item &d or did not follow that rule. For example, in Watson and Chatterjee (2012), problems presented
C shape strings illustrating a progression rule and participants choose from answer options
pulatively illustrating the same rule (e.g., target: red triangle, blue triangle, red circle; answer options:
red diamond, blue diamond, red diamond or red diamond, blue diamond, red square). Similarly, Preusse

et al. (2010) used a task where the rule set was given by mirror symmetry of geometric ensembles.

Participants in this study viewed dual square grids in which blocked shapes depicted transformations
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about vertical, horizontal, and/or diagonal axes. The task was to indicate if a second grid pair followed

the same reflection rule as the first.

Not all analogical problems of this category portrayed visual rules via abstract shapes. For example, Cho

et al. (2010) used the People Pieces Analogy Task (Sternberg, 1977) to elicit analogical reasoning by

presenting subjects with two analogical pairs of drawings of human forms. Each pair shar
common quality (e.g., width, height, gender...) and participants were given a list of thes
involved

They were asked if dual sets of people pairs correspond across a given dimension. Tiis

problem solving across scales of both relational complexity and levels of attentj@®ynte nce. The
literature search across visual analogy problems yielded 5 (out of 88 total vis, a¥g! problem solving)

analogical reasoning contrasts reporting 28 activation foci from 4 papers.

Tower of London Task

In the Tower of London (TOL) (Shallice, 1982) or Tower of4daMy tagk (Zhang and Norman, 1994),
participants are presented with an initial and target confi stacked colored balls or disks (e.g.,
red, green, blue) that lie along three columns. These ed Jjects can be moved one at a time and
of the three columns. Participants are tasked

to transform an initial arrangement into a final

memgfy (e.g,™ask objective: “remember the location of objects/places encountered in a virtual

viro and recall the placements later) or spatial planning and learning (e.g., task objective: “find

from a starting point to a target location within a map/virtual environment.”) Tasks of the
latt€r variety aligned with our operational definition of problem solving and appropriate experiments of
this kind were included in the present meta-analysis. Experiments displayed pictures of mazes or maps
from allocentric or egocentric reference frames, and baseline conditions often took the form of route

following along visually guided paths. We included relevant experiments identified in a 2014
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neuroimaging meta-analysis of spatial navigation (Boccia et al., 2014) and updated and extended the

corpus of navigation problem solving papers for the present study.

The majority of included tasks asked participants to make one or several critical decisions at intersection

points during navigation, and subjects learned through trial and error which sequence of decisions led to

requiring detour planning as in Campbell et al., 2009 or laria et al., 2008). S vigation tasks not
included in this study were those that lacked the crucial problem solving cnpongnt of figuring out a
means in order to reaching the task goal, for example tasks wherei nts memorized a spatial

layout during training and traversed the same environmenturing\scdnning, paradigms involving

navigation from one familiar landmark to another within a partiNpa ome city, or tasks in which the

target location was clearly visible from the starting location\{he literature search yielded 39 (out of 88
total visuospatial problem solving) visuospatial navjgati em solving contrasts associated with 531

activation foci from 18 published papers for inclusi meta-analysis.

Visuospatial Relational Reasoning

As in verbal deduction paradigm
transitive inference across relas guMent types (e.g., A is to the left of B, B is to the left of C, Aiis to
the left of C). Typically, p&s $mpleting these tasks undergo initial out-of-scanner training where
they encode multipl ed spfape pairs (e.g., A<B, B<C, C<D, and so on). Taken together these pairs
implicitly represefteq el nts drawn from an ordered shape string (e.g., A<B<C<D<...<N). Then, during
MRI scanni rifpgfts viewed non-sequential pairs of encoded relational shapes and selected the

right-m pe (¢.g., Cin A<C or D in B<D; Acuna, 2002; Heckers et al., 2004).

Variatgos off these relational paradigms involved conditional rule completion or falsifications tasks

articipants viewed colored shape configurations and were asked if they could complete or
falsypy a relational rule (e.g., "if there is not a red square on the left, then there is a yellow circle on the
right"; Eslinger et al., 2009; Houdé et al., 2000). One such falsification task depicted five colored balls of
equal or unequal weights appearing across four balance scales (Wendelken and Bunge, 2010). The scales
were drawn balanced or tipped to indicate the relative ball weights. The task was to determine if a fifth

scale drawing violated or verified the inferred weight rule. The literature search produced 6 (out of 88
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total visuospatial problem solving) relational reasoning contrasts associated with 75 activation foci from

5 papers.

Visual Inductive/Probabilistic Reasoning Paradigms

Inductive reasoning paradigms wherein general rules are inferred from specific instances were less

ubiquitously used in the visuospatial domain. However, appropriate paradigms that presen visual
information and asked participants to decide on generalizable rules or plausible answer, es Wre
included in this analysis. In one such task (Goel and Dolan, 2000) participants conside@ animal
drawings where the animal’s physical characteristics (e.g., tail length, abdom pe) Yaried along
several degrees of similarity. The task was to generate a rule to determinegf all anMgals in a set were
likely of the same species. Another task (Blackwood et al., 2004) show eNal igdges of blue and red

balls and participants determined if the balls had been drawn from #bottlie cntaining either a 40:60 or

a 60:40 ratio of blue to red balls. In another task (Lu et al., 20 rticipants viewed inverted triangles

displaying numeric values at each vertex. Each triangle fol known (e.g., left — right) or unknown
(e.g., bottom + right = left, right + left = bottom) rule. Participants performed simple
calculation (control condition) or inferred the tria e om a target triangle and then applied that
rule to a new triangle (activation condition ed this paradigm in the visuospatial problem

solving meta-analysis, even though numerical ™lculation was involved, because the target problems

used visuospatial stimuli to illustrata @
(out of 88 total visuospatial projgfenyso e

foci from 3 published papeggor in n in the meta-analysis.

encoded induction rules. The literature search yielded 4

inductive reasoning contrasts associated with 46 activation

Additional Visuospatig S

We also includ is blem solving within game-play contexts. Strategy-based board games such as
Chess or Ggfinvolve $6tract reasoning, planning, and visuospatial processing. Although not prevalent in
the litgfa e studies (Atherton et al., 2003; Chen et al., 2003) have investigated the neural
correlqges inyolved in this level of strategic game-play. Participants in these experiments viewed in-
p game boards and either identified the position of target pieces (control condition) or
detyrmined the best next move within a mid-game board configuration (activation condition). The

literature search yielded 3 (out of 88 total visuospatial problem solving) additional visuospatial contrasts

containing 53 activation foci from 2 papers.

3.2. Global Meta-Analysis
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After completing the literature search, an ALE meta-analysis was performed across the total set of 131
papers that examined problem solving within all modalities and paradigms to identify convergent brain
regions associated across all problem solving task described above. When multiple contrasts were
reported within a single paper they were modeled as separate experiments provided they met our
inclusions criteria (with 2.10 contrast included on average per paper, and no single paper contguting
more than seven separate contrasts.) This global problem solving meta-analysis inclf§de®y280
contrasts, which reported a total of 3,166 foci from 1,919 individuals. Convergence acr, eriménts

was observed in the frontal and parietal cortices, bilaterally including the superior, gid ar® inferior

frontal gyri (SFG, MFG, and IFG), as well as the dIPFC, dorsomedial prefrontal C), and ACC

(Figure 1; coordinates listed in Table 1). Bilateral parietal regions were cross the medial

posterior parietal cortex including the SPL, inferior parietal lobule (IP uneus. In addition to

regions were also implicated in problem solving with bilat€ rgence occurring in the inferior and

lateral occipital gyri (I0G and LOG), including the Iinguw ) and fusiform gyrus (FG).
3.3. Mathematical Problem Solving Meta-Analysi

otal of 1,044 foci across 41 papers wherein 560

these frontoparietal clusters, consistent activation was observed in tI bk ral anterior insular cortex
(alC), extending into the claustrum, lentiform nucleus, caudEE amy| aplerior thalamus. Primary visual

We next investigated 99 experiments reportin

participants completed mental mj ‘@
symbols, and/or letter- or sym

al problem solving tasks using number, mathematical

uli. Significant ALE-based convergence across these studies

ices, including the dIPFC, dmPFC, ACC, SPL, IPL, and precuneus

alongside conv FG extending into the ACC. Peak ALE scores were observed in large bilateral

was observed in the frontggariet
(Figure 2A, Table Z;Wgﬁlar the global analysis, multiple bilateral MFG clusters were observed

er e
clusters cent outphe IFG, alC, and in portions of anterior prefrontal cortex (PFC). These frontal
regions inclided sgmewhat larger left-lateralized ALE clusters. In addition to frontal regions, sizeable
postefior par clusters were observed in the supramarginal gyrus as well as bilateral IPL and SPL.

ike representation-specific analyses, the mathematical problem solving analysis displayed

bilferal occipital convergence in the I0G, LOG, FG, and LG.
3.4. Verbal Problem Solving Meta-Analysis

Convergence across 93 verbal-based problem solving experiments reporting 1,028 foci in 43 papers and
including 650 participants was next tested. Similar patterns of convergence occurred across the bilateral

dIPFC, dmPFC, and posterior parietal regions, although somewhat smaller clusters were observed
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compared to the calculation analysis (Figure 2B, Table 2b). Verbal problem solving revealed left-
emphasized MFG convergence extending from precentral gyrus / presupplementary motor area (Pre-
SMA\), across dIPFC, left MFG, and left orbitofrontal cortex. Specific to this domain were clusters in the
left-lateralized middle temporal gyrus as well as bilateral thalamus. Convergence was also observed in

the LG, and clusters were observed in the cerebellar uvula and pryamis/tuber.
3.5. Visuospatial Problem Solving Meta-Analysis

The third and final domain-based ALE meta-analysis included 88 experiments reveali 09 ivation

g

Within the visuospatial domain, problem solving meta-analysis revealed simffar regi®

foci appearing in 50 papers in which 745 participants engaged in picture-based em sSPIving tasks.
of convergence

as in the global as well as language- and mathematical-based problem sgf\ alybes, including medial

posterior parietal cortex, bilateral horizontal IPS, right SPL, precundys, pilat§ral alC, and bilateral mid

and superior frontal gyri (Figure 2C, Table 2c). uneus, posterior cingulate,
parahippocampus, and retrosplenial cortex clusters wer d for this visuospatial analysis that
were not revealed by the other representational domajgs. AddNionally, the cortical clusters were overall
more strongly lateralized compared to the matheggatica\dnhdXerbal meta-analyses, and larger regions of

dIPFC convergence were observed in the righjacomQa o left hemisphere.

3.6. Conjunction Across Domains

Next, we sought to identify a cor #in regions commonly linked with problem solving across all

representational domains by ming a conjunction analysis (Nichols, 2005) across the mathematical,
verbal, and visuospatial A Its.Nine clusters were identified in this conjunction analysis (Figure 2D,

Table 3). These clu VQCIIud d the dorsal aspect of the cingulate gyrus/SFG, as well as left dIPFC,

inferior middle dgntMg IMFG), left alC, and the horizontal segment of the IPS, with greater cluster
extent obsgfved in left hemisphere. Table 4 illustrates the ten top terms most associated with the
corep Mg network resulting, as resulting from formal reverse inference analysis.

7.C Analyses

Th¥n, to examine functional specialization we performed formal contrast meta-analyses (Bzdok et al.,
2015; Laird et al., 2005) and identified regions of domain specificity for mathematical problem solving
(Figure 3A, Table 5a), verbal problem solving (Figure 3B, Table 5b), and visuospatial problem solving
(Figure 3C, Table 5c). Mathematical problem solving uniquely recruited multiple clusters within a dorsal,

frontal, insular, and occipital network of regions. Superior parietal lobules, IPS, and postcentral sulci
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were observed bilaterally along with the left posterior precuneus and bilateral pars opercularis/IFG. The
left of these IFG clusters showed significant extent along the precentral sulcal boundary towards the
precentral gyrus. Mathematical-specific clusters were also observed in the bilateral anterior insula
cortices, bilateral occipital poles, and in the left temporo-occipital part of the left inferior temporal
gyrus. Verbal problem solving was specifically associated with convergence in a strongly left-emppsized
set of frontal, temporal, and occipital areas. Large clusters occurred in Wernicke’s area / lef§poRgrior
temporal gyrus, Broca’s area / left pars triangularis, bilateral dorsal striatum (putame audate),

and in the left angular gyrus. Clusters with lesser extent were observed in the lefg dl |t lingual

gyrus, and in the dorsomedial PFC. This contrast analysis revealed two additj s selectively

observed in verbal problem solving studies in the left posterior lobe and t erior lobe of the
cerebellum. Visuospatial problem solving studies showed domain-spefifi “parietal convergence
bilaterally in the superior frontal sulci, precentral sulci, and in rightNJIR§&Z with cluster extent from
rostral to caudal subdivisions. Visuospatial-specific clustersAereQgdgdttionally observed for bilateral

precuneus, right inferior parietal lobule, posterior cingulaté} nial cortex, and parahippocampus.

3.8. Problem Demand Analysis

Lastly, we wished to examine the common a erns associated with problem solving demand

generalized across problem type. We employed ilar selection procedure to that adopted by Duncan

and Owen (2000) in their observatig

'r multiple demand network by locating convergent neural
correlates associated with task [fad yyhiMyefmultaneously controlling for variability across problem type.
We selected contrasts that g@mpa oblem difficulty across different levels of identical problem tasks
(see Supplementary T, 1d)N¢e tested convergence across 41 Complex > Simple problem solving
experiments repoyfng foci in 21 papers and including 355 participants. Patterns of co-activation
associated wj lenp demand were similar to common activity patterns revealed by the global,

domain, anll conjupction analyses. Bilateral dIPFC, dmPFC/ACC, left precentral sulcus, bilateral alC, left

lateraff frontopOlar cortex, left precuneus, bilateral SPL, IPL, and horizontal IPS were associated with
iggreas blem demand (Figure 4 purple, Table 6). This problem demand network showed significant

owWflap’with each of the within-domain meta-analytic maps, as well as with the conjunction network.

4. DISCUSSION

We assessed the diverse collection of problem solving neuroimaging studies and performed multiple

quantitative coordinate-based meta-analyses to identify common and distinct brain networks
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consistently engaged across various tasks. This study is the first to systematically explore convergent
brain areas evoked by problem solving across its multiple representationally diverse forms. The meta-
analytic corpus of 131 studies included paradigms that, while traditionally considered distinct, met a
common operational definition of problem solving wherein participants performed multi-stepped,

solution-driven critical thinking operations bounded by mathematical, verbal, or visuospatial ru

Global analysis across domains revealed broad involvement of frontal, parietal, insular, an§ o
regions. Separate domain-specific analyses revealed consistent but unique conve ctivation

patterns in the dIPFC, mPFC, IPLs, alC, and in temporal, occipital, and subcortical strygturéqgTo¥elineate

content-general or content-specific convergence of activation, we then perfoj conjunction

and contrast analyses across mathematical, verbal, and visuospatial networ identified a core
system of dIPFC, dmPFC, IPS, and SPL areas that subtends all types of gro ving. Domain-specific
maps revealed multiple clusters in left temporal gyrus, bilatergl insWa; ipital pole, bilateral pars
opercularis, and areas across the superior parietal lobules t layed functional selectivity within

task sub-types. Lastly, problem demand was associated tion across a broad set of frontal,

parietal, and insular areas similar to those revealed in tw and conjunction analyses.
4.1. A Core Problem Solving Network

Results from the global problem solving meta-aNglysis provide evidence that problem solving processes

oW bic-parietal regions. This network included frontal gyri,

across traditionally distinct paradig g diverse content types engage regions within a consistent

and broad network of frontgfin

central execuyja i berg et al., 2009; Niendam et al.,, 2012), Multiple Demand (Duncan, 2013,
2010, 2006@Duncap and Owen, 2000), and salience networks (Seeley et al., 2007). From a systems-level
perspfctive ol drain function, in which distinct distributed networks dynamically interact to flexibly

ide C x behaviors (Cohen et al., 2004), our findings suggest generalized problem solving relies on

opdration between perceptual and regulatory systems. Specifically, the alC has been described as a
node connecting central executive and salience networks which translates pertinent bottom-up
information from sensory and limbic inputs to CEN areas, thereby negotiating network switching
between internally focused (i.e., autobiographical) and externally directed (i.e., goal-oriented) states

(Cocchi et al., 2013; Goulden et al., 2014; Menon and Uddin, 2010; Uddin, 2015). This interaction is
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thought to initiate CEN regions to implement top-down control and direct coordinated responses and
behavior. Multiple areas across the PFC have been implicated in a range of broad executive functions
including working memory (Curtis and D’Esposito, 2003; Owen et al., 2005), planning (Owen, 1997),
flexibility (Armbruster et al., 2012; Leber et al., 2008), language comprehension (Ferstl et al., 2008),
reasoning (Donoso et al., 2014; Krawczyk et al., 2011), and decision making (Keuken et al.,A&014).
Observed parietal CEN areas are also associated with a dorsal attention network and regions %itMg the
superior and inferior parietal lobules support a range of processes including learnin a et’al,

2016), visuospatial working memory (Zago and Tzourio-Mazoyer, 2002), congruenc SIRge, XIme, and

number sense (Riemer et al., 2016), calculation (Arsalidou and Taylor, 2011 t al., 2003),
metacognitive monitoring of information retrieval (Elman et al., 2012), and fisual ait&ntion (Behrmann
et al., 2004; Blankenburg et al., 2010; Duncan, 2006). The convergent aftivaii hin CEN and salience
networks identified in the global problem solving analysis suggest\th eas and their associated

cognitive functions, as influenced by bottom-up signals medi a)f, play critical roles in problem

solving across content domains.

elements fundamental to all prog
core network as being assog ithsychologically-linked terms such as “monitoring”, “switching”,
”attention”/”attentional”&g memory”/“memory”, and “demands”, indicating the core network
likely provides multi eneral purpose resources including supervisory control (e.g., managerial
support directiv@ oring cognition), attentional and memory processes, and perceptual and

achieve a broad range of problem solving tasks. One proposed role of such

cognitive rfources
distribffted n subdivisions is in actively managing the explicit within-network engagement of brain

areas ccgmplish specific actions and goals (Cole et al., 2013; Fedorenko and Thompson-Schill, 2014;

processes. Our functional decoding analysis revealed this

7, 2017; Telesford et al., 2016). In this way, particular zones may be differentially engaged based
on Mie demands and resources required to complete a task, and shared zones may be involved with
mental operations that are critical to, and potentially transferable across, multiple task types (Cole et al.,
2013; Duncan, 2010; Niendam et al., 2012). Common centralized activity across a range of tasks may
also be responsible for making available basic cognitive resources, such as working memory

maintenance or adaptable processing elements, that are critical in performing demanding tasks (Cabeza
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and Nyberg, 2000; Fuster, 2013). Indeed, these core regions are frequently functionally coupled across
diverse paradigms (Duncan and Owen, 2000; Niendam et al., 2012) and likely are central in providing
flexible attentional focus in many forms of human cognition (Duncan, 2013, 2006). Thus, the within-
domain problem solving conjunction map engaging dmPFC, mid-DLPFC, IMFG/inferior frontal junction,

left precentral gyrus, precuneus, left horizontal IPS, and bilateral areas in the SPL may reprg#ent a

shared sub-network that commonly provides subordinate processing resources (e.g., those d in

order to carry out directed cognitive tasks) as well as broader administrative support problem
solving in general. Focused parietal cortex activity, such as that observed here, iofsly been
implicated in start-cue processes, and dedicated sections of the dmPFC and dI peve to form a

core system responsible for information maintenance, monitoring, and int staining of goal-

oriented task-sets (Dosenbach et al., 2006; Miller and Cohen, 2001). Mif-d IMFG/IF) regions are
thought to accomplish process-relevant attentional shifting and task\¢oogg#fiation (Brass et al., 2005;
Bunge et al., 2002; Derrfuss et al., 2004). Additionally, it ha eMrogosed that a similar set of core
regions common across demanding cognitive tasks tog also act to flexibly trigger specific

context-dependent schemata appropriate for task per ceMCieslik et al., 2015). These observations

are consistent with the Multiple Demand system\Qgopdged by Duncan et al. (2010, 2006; Duncan and

Owen, 2000), that functions by reducing co ing processes into sub-parts and engaging brain

areas to carry out cognitive operation ssary)for successive task steps. Thus, it is plausible that the

Q e CEN sub-regions during problem solving may support

s, sustaining, and directing attentional demands between

common engagement of these

herently complex multi-stepped processes, while simultaneously
providing basic cogp resodrces to aid in processing within a wider set of functionally- and
situationally-relegan gtworks. Though additional empirical work should be conducted to establish
definitive fupfctiona s and mechanisms, we posit that this common network provides shared general
purpos itive/processes that commonly guide cognitive operations during problem solving to

acces@manage, and allocate relevant executive resources.
4, esentational Domain Specificity

The set of regions observed as common across all problem solving contrasts represents a necessary but
insufficient neural system for accomplishing the demands of problem solving within particular contexts.
Separate verbal, visuospatial, and mathematical meta-analyses revealed robust networks each

containing regional dissociations across domains. Therefore, to better characterize domain specificities
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in the context of problem solving type, we performed contrast analyses examining brain function
selective to each domain. Our aim was to identify any segregated areas that may be responsible for
particular roles, and thereby distinguish and describe the multilevel processes occurring within context-

specific problem solving.

In the case of mathematical problem solving, the explicit recruitment of fronto-parietal, gfcipito-
temporal, intraparietal sulcal, and alC sub-regions is consistent with accumulating evi
specific constellation of cortical areas is critically involved in calculation and together s a circuit
for mathematical cognition. Numerical manipulation, number ordering, arith agnitude
processing all engage a set of such sub-areas (Ansari, 2008; Arsalidou and Tay|e® : Bueti and Walsh,
2009; Dehaene et al., 2003; Piazza and Eger, 2016). Moreover, the left,tefgporo-pccipital part of the
inferior temporal gyrus, which was identified in this analysis, has be rized as a “number form
brain area” responsible for processing visual numerals (Grothee@l " Merkley et al., 2016; Shum
SS

Dehaene, 1992; Dehaene and

et al.,, 2013). The so-called triple-code model of number pr

Cohen, 1995) conceives of a ventral visual pathway thatN\ommunicates numeral information from

ale® constitute a functional sub-system to execute mathematically

relevant reasoning proc

While consensus yet been reached on functional pathways subtending linguistic and verbal
processes in | e-bghin research (Poeppel and Hickok, 2004), it is clear that specific cortical areas, in
line with th@se uncpvered in the present verbal contrast analysis, play vital roles in language processing
(Binddr et al., 7). Significant domain-selective convergence during verbal problem solving occurred in
tge cla ernicke’s and Broca’s areas, which support a broad range of language processes (DeWitt
anWRalischecker, 2013; Gough et al., 2005; Lesser et al., 1986; Poeppel et al., 2008; Wagner et al.,
2001). Left-hemispheric language lateralization (Powell et al., 2006) was observed across several clusters
in posterior and superior temporal sulcus/parieto-temporal junction, areas that co-activate with dorsal-

stream language regions (Erickson et al.,, 2017) and may be responsible for verbal working memory

subroutines (Poeppel and Hickok, 2004). Additionally, this contrast also identified verbal-selectivity in
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the left angular gyrus, a region involved with reading comprehension and semantic processing (Seghier,
2013). Sub-cortical basal ganglia clusters (dorsal striatum/caudate) may support reasoning and decision-
making (Robertson et al., 2015), linguistic computation (Monti et al., 2009; Poeppel and Hickok, 2004),
and grammatical processing (Ullman, 2001). Thus, within the verbal domain, we posit that these
identified regions are responsible for actualizing verbally-relevant operations as they are appliedithin

the context of language-based problem solving.

Visuospatial-selective activity in the superior fontal sulci during problem solving€toRraphically

corresponds to the primary cortical oculomotor areas, the so-called human fr eyeRfields (FEFs;
Cieslik et al., 2016; Grosbras et al., 2005; Lobel et al., 2001; Vernet et al., ), &gsoclated with eye
movements and visual awareness processes, including covert (i.e. non- r) attention shifts during

visual discrimination (Grosbras et al., 2005; Muggleton et al., 2003; al., 2014). The observed

right hemispheric visuospatially-selective MFG cluster in conjun e FEFs has been implicated

in visual search and spatial working memory tasks (Grosbras et . Further, as part of the brain’s
gaze control system, the FEFs project to PFC and parietal &gas, and increased interaction of regions

within this system occurs during visuospatial judgme focus, and when visuospatial cognitive

demands are increased (de Graaf et al., 2010; I., 2007; Vannini et al., 2004). It has been

suggested that, when actively managing visuo working memory demands (Courtney et al., 1998),
feature analysis. This analysis is then focused to task-

als from the MFG (de Graaf et al., 2010), a finding that is

consistent with our visuosp ecjc observations. These contrast results suggest that visuospatial
problem solving engag ral Subsystem to allocate oculomotor and attentional capabilities for

visually salient stimyfi.

While these rgbresentational domain results provide convincing evidence that distinct

problem solving within particular domains, we add a cautious note that these

., 2013), yet its involvement in the mathematical contrast results certainly should not be interpreted
as the region exhibiting functional selectivity for mathematics. The same holds true for the within-
domain maps: these results can resemble similar findings from relatively unrelated studies across the
literature (e.g., the mathematical domain network shares activity within regions also observed during

target detection and response inhibition, tasks which arguably have little mathematical demand;
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Hampshire et al., 2010). Rather, we believe our results serve to highlight the full constellation of brain

regions that separately and/or cooperatively support problem solving within specific representational

types.

4.3. Cognitive Demand in Problem Solving

The above domain-general, representational, and contrast analyses focused on identifying braj tivity
associated with or independent of problem type, as defined by representational mod Incluyed
experiments spanned a diverse set of contrasts, allowing us to broadly assess conv NnCQYn neural

activity linked with distinct varieties of problem solving. However, this pooling @ vari®d contrasts

simultaneously limited our ability to delineate neural correlates associagd witfgpecific cognitive

processes central to problem solving. To address this limitation, we a he Approach of Duncan

and Owen (2000) and included only contrasts that clearly isolated same Jspect of problem solving,

namely problem difficulty, while also controlling for task type. Y™ way)we were able to cleanly isolate
the neural activation patterns associated with cognitive across a breadth of problem solving

tasks.

The observed clusters in the dIPFC, frontopolar tex\dmPFC, alC, and horizontal IPS represent the

collection of brain regions that consistently increases in problem demand, independent of

problem type. We note that our observgigns areyonsistent with previous findings regarding the brain’s

multiple demand (MD) system (C al., 2018; Duncan, 2010, 2006; Duncan and Owen, 2000;

Fedorenko et al., 2013). Signi# rlp was observed between the problem demand regions and
each within-domain prob etwdYK. Thus, general problem solving seems to be broadly linked to the
wider MD system c ac®ss diverse tasks and responsible for flexibly accomplishing multiple
attentional and ggfgnkive ctions. The MD system is also thought to play a key role in focusing specific

cognitive o io interfacing with multiple brain systems to execute structured and successive
goal-ori subjsks (Duncan, 2010). It is not a particularly surprising result that a challenging
probl@ draw on enhanced recruitment of this MD system, but what is perhaps more insightful is
? r results seem to suggest this is generally the case, regardless of the type or context of the
prdplem task.

4.4. A Model for Multi-Network Cooperation in Problem Solving

Viewed collectively, these global, common, domain-specific, and demand-related results outline a set of
related yet dissociable networks engaged during problem solving. The core set of activated regions

appears to be centrally involved in problem demand, and formal reverse inference suggests activation
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across these areas provide a set of general cognitive resources that, perhaps, interface across broader
brain systems and focus attention within directed sequential action (Duncan, 2010). At the same time,
contrast results highlight separate representationally-specific sets of coordinated activation patterns
that appear to be honed for achieving precise operations. Together, activity across these domain-
general and domain-specific areas combine to form different aspects of the overall activation pgterns
revealed by problem solving within representational domains. Fundamentally, meta-analytic fes are
unequipped to evaluate such functional network dynamics, although these processes certdinly

play an essential role within problem solving. While the particular analyses we condygcte niyBt isolate

mechanisms in how these dissociable activation patterns come together to a ggregational

cognitive maneuvers that make up problem solving, empirical neuroimagding stugli®s have begun to

explore these dynamics in regional functional connectivity and networlin ns. Additional work is

still needed to elucidate how such processes may support the lar roblem solving processes

humans face on a day-to-day basis. Here, we outline one pedib/®gatefpretation of how our multiple
network observations may come together to holistic e problem solving across diverse
contexts.

We propose a speculative model of general prob olytng brain function that arises from a series of

sub-network and systems-level interactio t" together orchestrate multifaceted cognitive

procedures. In our model, the core g

steps to flexibly monitor and
dispatched from the core r

context-specific demandg\Su

and dgfect s relevant stimuli, and funnel information into linked sub-routines to adaptively focus
atten to/achieve smaller, targeted reasoning procedures accomplishing focused cognition (Cohen
a osito, 2016; Duncan, 2013; Uddin, 2017). We propose that honed processes, as directed by the

cor®’ network, may participate in feedback loops delivering ascending analyzed information back to
whole-brain systems to sustain multi-stepped analytics and trigger confirmatory metacognitive
processes (e.g., consistency checking or error detection; Mayer, 1998). If this is the case, the core
network may aid in sustaining problem solving-related activity by re-dispatching or re-directing

reasoning subroutines as needed, ultimately informing decision making processes to produce problem
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solutions. Of course, meta-analytic results alone cannot confirm this model, and a considerable amount
of additional research is needed to probe the dynamic cross-network connectivity patterns we have
here suggested. However, existing work that sheds light on network dynamics within problem solving,

outlined below, seem to be consistent with this proposed model.

has resolved dynamics across multiple left hemispheric sub-networks, and while t ne

to coordinate with similar stepwise profiles across subjects, individual diff ceQn response times
were also reported alongside subject-by-subject variation in sub-ngtwWrk dyration during task
engagement (Collard et al., 2016). This suggests common network s subtend task completion,

but also distinctive contributions from these dynamics may infuenceN\beNavioral differences. In fact,

performance in problem solving has been explicitly linked to Wia in how brain systems interact

across problem steps. Anderson et al. (2012) revealed shiftidNg combinations of whole-brain neural sub-

states in children as they solved algebra problems; in with high error rates utilized more sub-

states at each problem step than their high-perfor rs, and reliance on multiple states decreased

as error-prone students achieved competen ugh practice. Such practice-related interactional

These findings suggest icufties in problem solving may be accompanied by increased cross-

network complexit ps as characterized by cognitive lingering or looping between unnecessary or
convoluted ne nd that ease in solution derivation may rely on more efficient multileveled

network dyfamics.

Yet sqfving tryly novel problems is rarely easy, and these network dynamics should be considered in the

tex roblem solving as an implicitly challenging act that requires forging exploratory paths

to unknown solutions. These processes can demand substantial cognitive load and may require a
cerfain degree of initial lingering within inefficient operations in order to flip positions of uncertainty
towards coordinated and meaningful maneuvers. It is likely, then, that successful problem solving relies
on a balance of multileveled and complex network crosstalk that eventually transitions towards efficient

cooperation between whole-brain systems and targeted sub-processes. The use of creativity within
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problem solving is one resource that aids in flipping initial ineffectual processes towards productive
solution derivations (Aldous, 2007; Fink et al., 2009; Lubart and Mouchiroud, 2003), and increased
dynamic coupling between salience, DMN, and CEN regions has been observed to support such creative
idea production (Beaty et al., 2015). At the same time, creative processes in problem solving go hand in
hand with shifting attentional focus across problem features (Friedman et al., 2003; Wegbrei al,,
2012; Wiley and Jarosz, 2012), and increased effective connectivity between salience and C ions
has been observed in individuals with a strong ability to engage in attentional switchi t not’ for
those with reduced capacity to shift attentional stances during tasks (Kondo et 2 . [Ps likely,

then, that differences in problem solving success may be characterized by t d process of

coupling between salience, CEN, and DMN systems. Individuals experi@nci ificulty in solving
chanisms that drive
connectivity loops between fronto-cingulo-parietal regions. individuals with more
experience in problem solving may be better able to tran
towards more effective honed sub-processes useful in sol ation. Understanding the processes

by which networks interact may prove to be importa enMinderstanding individual or group-level

differences in problem solving competency. Me ic techniques such as those employed in the

present study cannot resolve brain dynami sdre between-network connectivity, but the broad

and processes-specific nature of our re cooperation between large-scale brain systems and

functionally specific sub-networkgam¥ a crucial role in problem solving. Observing how these

interactions occur may help aining questions in how to better support problem solving

success across individuals

4.5. Limitations an QWork

This study br nd Jor the first time, characterized the common and dissociable neural correlates
underlyi ultiplg €xamples of human problem solving. The investigation synthesized findings from a
corpuff of ne maging experiments reporting coordinate-based results across varied problem solving

nife s in healthy subjects. We included a wide variety of problem tasks and contrasts so that

codld determine convergent brain activity associated with domain general problem solving
networks. However, this approach had two main limitations. First, while this set of studies was
sufficiently diverse, problem solving as a whole is widely investigated across disciplines and contexts.
Thus, the mathematical, verbal, and visuospatial paradigms we examined constitute a subset of the

larger breadth of human problem solving. However, while the neural substrates uncovered in this study

31



may best model a particular slice of possible human problem solving processes, it is tenable that similar
systems of coordinating perceptual, regulatory, and/or contextually bound channels are also broadly

representative of generalizable neural mechanisms across the scope of human problem solving.

The second limitation stems from the diversity of contrasts chosen. We modeled problem solving as a

contributions specific cognitive processes had on the resulting meta-analytic maps. Hg,

domain-general or representationally specific results, the problem demand anal clu contrasts
of only one type (i.e., complex > simple problems), and was thus able \ y such common
activation patterns linked with problem difficulty. Further investigations sceRog to jfolate other specific

constituent processes or characteristics central within problem solvi a similar approach.

Further, all problem solving instances in this study were con laboratory environment. Yet,

there is a growing cross-disciplinary appreciation of the s social, motivational, and affective

processes can impact problem solving abilities (Beilog and aro, 2007; DeBellis and Goldin, 2006;

Heller et al., 1992; Mayer, 1998). Thus, the mentgprockdseunderlying problem solving in a controlled

setting may not identically resemble those o ving outside the laboratory. Additional studies
bridging problem solving neuroimaging investig&jons with social and affective neuroscience need to be

conducted before we are able to ex e topics with meta-analytic tools. Given these limitations,

@
it is likely that the neural repregentytioMyof problem solving occurring across naturalistic settings and
contexts may involve diffeynt se activation patterns than those reported in this study. However,
our finding of a shar re ork that may play a role in coordinating, engaging, or negotiating

sensory signals li s even for more distributed or complex networks. Integrating neuroimaging

L meta-analytic results are of course limited by the quality and volume of studies available in the
ne§roimaging literature. There are several sources of error inherent to fMRI analyses, such as inter-
subject anatomical variability and spatial smoothing, that can lead to decreased resolution in group-level
fMRI analyses (Nieto-Castafidon and Fedorenko, 2012), and in turn cause specious spatial overlap in

meta-analytic results. This issue impacts both fMRI group-level analyses and meta-analysis in general.

The results we present in this study show centralized and consistent co-activation patterns across

32



multiple task types and domains, and because of the coherences across our set of problem solving
network findings, they are not likely simply the product of sources of noise. However, spatial error may

still have contributed to lack of specificity in our observations.

This study leverages the existing wealth of problem solving activation-location findings to reveal

steps in problem solving research may be to further measure these stepwise n

explicit consideration on how naturalistic settings and behavioral fac C Impact network

interactions. Previous work has linked similar brain areas as those reyea herg to inter-individual

variability in cognitive ability (Goodkind et al., 2015; Muller et al., 2 N is currently unclear how

variations in network or sub-network connectivity patterns maygid oNnWbit individual differences in

problem solving success, and by understanding these proges from both a behavioral and

neuroscientific perspective we may be better able to charaserize how problem solving skills develop

across training. Such insight could inform interveptio dress the challenges posed by cognitive

dysfunction or affective deterrents on problem ingrsuccess (Ferrari, 2011). Neuroscience-based

interventions have already been used to succ improve problem solving performance in students

via mindset shifting (e.g., from intelj# as-fixed stances to beliefs in malleable cognitive abilities;

(Butterworth et al. Gabrieli, 2009; Kaufmann, 2008). Arguably, one of the fundamental goals of

neuroimaging a whole is to impact and improve people’s everyday experiences and

behaviors. | this seP¥e, one of the most promising future directions of neuroimaging problem solving

researgh is t m evidence-based educational interventions that aid in successful reasoning and skill
devel eny. Thus, understanding the neural mechanisms of problem solving, especially with a focus on
h itive, affective, and environmental factors can influence network dynamics and neural

dev¥lopment, has wide reaching applications.
Conclusions

In the present study, we performed multiple problem solving meta-analyses to answer the questions:

“How is content-general problem solving supported in the brain?”, “Does a common network direct all
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types of problem solving processes?”, and “What neural underpinnings selectively represent problem
solving within specific content variants?”. By considering a comprehensive set of problem solving tasks
that, heretofore, have only been considered separately, we provide evidence for a common brain-based
mechanism for human problem solving in which a shared frontoparietal system provides dual

attentional and regulatory support across diverse problem solving tasks, and we identify distinguj#kable

activation patterns that may uniquely contribute to specific representationally-linked f
problem solving across contexts. Our results suggest multiple convergent neural sy including
salience and cognitive control networks, give rise to generalized problem solving. Ugiqueircfs within

these networks support context-specific sub-classes of problem solving, and c cross diverse

stimulus modalities demonstrates a core network that supports problem sol i ndent of content
or focus. This core network appears to play a key role in managing pr nd. The current work
provides a novel neurobiological perspective on the wider study,of b solving across knowledge
domains and may serve to inform neuroeducational techniq aMging/o understand more about the

acquisition of problem solving skills.
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FIGURE CAPTIONS

Figure 1. Global Problem Solving Meta-Analysis. The global problem solving meta-analysis identified
convergence across 131 papers reporting coordinate results from a diverse range of problem solving
experiments. Multiple problem solving modalities were represented in this set, with 280 experimental
contrasts across 1,919 subjects. The broad engagement across whole-brain systems depicted by this
map represents the overall neural underpinnings of problem solving.

Figure 2. Representational Domain-specific and Conjunction Problem Solving Meta-Anal Pro

solving experiments were categorized into three representational variants. Within-domaj -analytic
maps are shown for (a) mathematical problem solving (red) = 99 experiments, (b) verb ob solving
(green) = 93 experiments, and (c) visuospatial problem solving (blue) = 88 experim on set of
brain regions, present across this heterogeneous set of 280 problem solving co picted in (d),

athematical problem
solving ([Mathematical — Verbal] N [Mathematical — Visuospatial verbal problem solving
([Verbal- Mathematical] N [Verbal — Visuospatial]; green), d (cN\viSuospatial problem solving
([Visuospatial — Verbal] N [Visuospatial — Mathematical]; lig
across distinct cortical areas. The difference maps shq
solving types, confirming problem solving within specifi
functionally precise neural circuitry.

t-bound variations across problem
domains relies on differential sets of

Figure 4. Problem Demand Meta-Analyses an in-Specific Overlays. High vs. low demand
problem solving meta-analysis (= 41 , as compared across problem solving by
representational domains. Meta-analysis of pr m solving tasks contrasting high vs. low demand
e thfee representational domain meta-analysis and the
domain (red), (b) verbal domain (green), (c) visuospatial
mains (pink).
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TABLES
Table 1. Coordinates of convergent activation from the global problem solving meta-analysis.

Table 2. Coordinates of convergent activation from the (a) mathematical, (b) verbal, and (c) visuospatial
problem solving meta-analyses.

Table 3. Coordinates of convergent activation from the minimum statistic conjunction ross
mathematical, verbal, and visuospatial problem solving meta-analyses.

Table 4. Top ten associated terms resulting from the functional decoding of the conjunctj ork:

Table 5. Coordinates of convergent activation from the contrast analyses across, at atical, (b)

verbal, and c) visuospatial problem solving meta-analyses.
Table 6. Coordinates of convergent activation from the problem demand :?@

QY
&

50



Table 1.

Global Problem Solving Meta-Analysis: Cluster Results

Cluster | Center of Mass Cluster Mean ALE

(MNI space) Extent Score

(mm?)

X Y Z
1 -8 -60 44 43272 4963767915
2 -40 | 14 28 34880 5.141902878
3 0 16 48 14136 5.19457248
4 48 22 26 10424 4.716323501
5 34 24 -2 4376 4.996635954
6 28 4 56 4152 4.715339105
7 26 -90 -2 3944 3.877476901
8 -44 | -68 -10 | 3392 4.341783053
9 -22 | -90 -6 3256 3.65327546
10 12 8 0 1824 4.033060065
11 -10 | -2 8 1184 3.545771589
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Table 2.
a) Mathematical Problem Solving Meta-Analysis: Cluster Results

Cluster | Center of Mass Cluster Mean ALE

(MNI space) Extent Score

(mm?)

X Y Z
1 -40 | 12 28 23472 4.757348649
2 -32 | -58 46 20760 4952114314
3 34 -56 46 12232 4.66749558
4 -2 14 50 8520 4.587236176
5 -38 | -78 -8 6000 4.090342946
6 48 14 26 5776 4.553845298
7 36 22 -2 4048 4.601554238
8 30 -92 -2 2136 3.88118772
9 44 44 18 1744 4.,158273835
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b) Verbal Problem Solving Meta-Analysis: Cluster Results

Cluster | Center of Mass Cluster Mean ALE

(MNI space) Extent Score

(mm?)

X Y Z
1 -44 | 12 32 15312 4.33758957
2 0 18 46 9480 4.318861886
3 -36 | -58 46 9040 3.971342055
4 28 -58 48 3912 4.051548754
5 -46 | 42 -4 3096 4.057574112
6 -56 | -38 2 2296 3.895057602
7 46 16 26 2056 3.709159944
8 14 10 -6 1536 4.127226892
9 28 0 56 1528 3.712928623
10 -32 | 18 -2 1472 3.861140029
11 -6 -76 -32 | 1296 4.355912738
12 -16 | 6 -2 1248 4.056552219
13 32 -60 -32 | 1088 3.83674567
14 -14 | -90 -6 1072 3.594205998
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c) Visuospatial Problem Solving Meta-Analysis:

Cluster Results

Cluster | Center of Mass Cluster Mean ALE

(MNI space) Extent Score

(mm?)

X Y Z
1 -6 -64 44 12112 3.716603808
2 -26 | -2 56 3848 4.211441027
3 26 2 56 3104 3.989812445
4 46 28 28 2912 3.76056968
5 -22 | -48 -8 2832 4.16922139
6 2 18 46 2424 3.894823741
7 26 -44 -8 2136 4.227535089
8 16 -50 10 1920 3.638302641
9 -30 | 22 2 1672 3.901817582
10 -14 | -56 10 1504 3.596709638
11 30 22 -4 1416 3.786637829
12 -46 | 30 26 1000 3.550904407
13 42 -46 48 984 3.81960495
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Table 3.

Conjunction Across Domains: Cluster Results

Cluster | Center of Mass Cluster Mean ALE

(MNI space) Extent Score

(mm?)

X Y Z
1 2 18 48 1536 3.795474291
2 -36 | -54 42 864 3.402106762
3 -28 | 0 56 800 3.845850468
4 -32 | 20 0 560 3.640799761
5 -48 | 28 24 120 3.228693962
6 -20 | -70 48 96 3.411124468
7 26 -66 42 88 3.235001564
8 48 26 26 40 3.147454739
9 38 -48 48 32 3.250995159
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Table 4.

Functional Decoding Analysis: Conjunction Network

Term Weight
1 Monitoring 17.511787
2 Attention 16.065172
3 Working_memory | 15.301581
4 Switching 14.103548
5 Motor 13.420883
6 Number 12.446875
7 Aging 10.583265
8 Memory 10.412371
9 Demands 9.7924593
10 Attentional 9.4440851




Table 5.

a) Mathematical Contrast Analysis: Cluster Results

Cluster | Center of Mass Cluster Mean ALE

(MNI space) Extent Score

(mm?)

X Y Z
1 -36 | -54 46 7128 2.340867996
2 36 -58 48 3560 2.346692562
3 -48 | 6 30 2120 2.027558804
4 -48 | -66 -14 | 1176 2.018541098
5 40 20 -4 1096 2.078261852
6 52 14 22 1096 2.07727766
7 -22 | -96 0 664 2.101318121
8 34 -94 0 528 2.133773804
9 -36 | 28 -2 504 1.951239109
10 -48 | 36 20 464 1.945821404
11 2 4 62 464 1.890849352
12 46 -32 48 424 2.093444824
13 40 44 16 392 1.966767192
14 -10 | -76 54 264 1.927932382
15 10 |18 |48 | 24 1.77411747W
16 10 20 34 24 1.752256036
17 42 46 28 16 1.7361%\'
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b) Verbal Problem Solving Meta-Analysis: Cluster Results

Cluster | Center of Mass Cluster Mean ALE

(MNI space) Extent Score

(mm?)

X Y Z
1 -54 | -38 0 2248 2.997398615
2 -50 | 20 14 1840 2.411432981
3 -6 -76 -32 | 1168 2.755334377
4 -18 | 6 -4 1016 2.47303915
5 -46 | 44 -4 928 1.907864809
6 16 10 -6 768 2.219819307
7 32 -58 -32 | 760 2.22034359
8 -44 | 16 42 688 1.848007679
9 -48 | -62 38 432 2.081069469
10 -8 6 44 248 1.883606553
11 -8 28 44 216 1.80697155
12 -52 | 24 -6 80 1.819324493
13 24 -60 46 48 1.733970284
14 8 12 54 32 1.815988064
15 -8 -90 -4 32 1.73003435
16 -20 | -64 48 16 1.73579
17 -14 | -88 -8 16 1.7340
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c) Visuospatial Problem Solving Meta-Analysis:

Cluster Results

Cluster | Center of Mass Cluster Mean ALE

(MNI space) Extent Score

(mm?)

X Y Z
1 -22 | -48 -8 2648 2.875540972
2 26 -44 -8 2128 3.413183212
3 14 -70 44 2000 2.023887396
4 16 -50 10 1840 3.255892754
5 -14 | -56 10 1408 2.71631217
6 -10 | -60 44 1176 2.350823879
7 52 32 24 576 2.226128817
8 22 0 56 544 1.922692895
9 -22 | -10 54 472 1.992258668
10 40 26 38 288 2.014489889
11 44 -50 50 232 1.95740664
12 28 20 -6 144 1.769598603
13 -4 -66 58 96 1.929203629
14 -12 | 72 34 72 1.77733826
15 -28 | 16 10 48 1.7474 98;%
16 -24 | 14 62 16 1.7080 6 &,

7

&S

&

59



Table 6.

Problem Demand Meta-Analysis: Cluster Results

Cluster | Center of Mass Cluster Mean ALE

(MNI space) Extent Score

(mm?)

X Y Z
1 2 20 46 8000 4.666377414
2 46 18 30 6048 4.15580997
3 -30 | -62 46 5888 3.862501404
4 -46 | 18 30 5488 3.90340326
5 -48 | 42 -4 2952 3.816493092
6 -26 | -2 56 2008 4.388107072
7 30 -60 48 1960 3.703304083
8 -32 | 20 -2 1712 4.010184277
9 34 24 -6 1496 3.495624957
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