000849790 001__ 849790
000849790 005__ 20240712100917.0
000849790 0247_ $$2doi$$a10.5194/acp-18-8647-2018
000849790 0247_ $$2ISSN$$a1680-7316
000849790 0247_ $$2ISSN$$a1680-7324
000849790 0247_ $$2Handle$$a2128/19248
000849790 0247_ $$2WOS$$aWOS:000435651200002
000849790 0247_ $$2altmetric$$aaltmetric:43900700
000849790 037__ $$aFZJ-2018-03902
000849790 082__ $$a550
000849790 1001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b0$$eCorresponding author
000849790 245__ $$aOn the discrepancy of HCl processing in the core of the wintertime polar vortices
000849790 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000849790 3367_ $$2DRIVER$$aarticle
000849790 3367_ $$2DataCite$$aOutput Types/Journal article
000849790 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552414289_13873
000849790 3367_ $$2BibTeX$$aARTICLE
000849790 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849790 3367_ $$00$$2EndNote$$aJournal Article
000849790 520__ $$aMore than 3 decades after the discovery of the ozone hole, the processes involved in its formation are believed to be understood in great detail. Current state-of-the-art models can reproduce the observed chemical composition in the springtime polar stratosphere, especially regarding the quantification of halogen-catalysed ozone loss. However, we report here on a discrepancy between simulations and observations during the less-well-studied period of the onset of chlorine activation. During this period, which in the Antarctic is between May and July, model simulations significantly overestimate HCl, one of the key chemical species, inside the polar vortex during polar night. This HCl discrepancy is also observed in the Arctic. The discrepancy exists in different models to varying extents; here, we discuss three independent ones, the Chemical Lagrangian Model of the Stratosphere (CLaMS) as well as the Eulerian models SD-WACCM (the specified dynamics version of the Whole Atmosphere Community Climate Model) and TOMCAT/SLIMCAT. The HCl discrepancy points to some unknown process in the formulation of stratospheric chemistry that is currently not represented in the models.We characterise the HCl discrepancy in space and time for the Lagrangian chemistry–transport model CLaMS, in which HCl in the polar vortex core stays about constant from June to August in the Antarctic, while the observations indicate a continuous HCl decrease over this period. The somewhat smaller discrepancies in the Eulerian models SD-WACCM and TOMCAT/SLIMCAT are also presented. Numerical diffusion in the transport scheme of the Eulerian models is identified to be a likely cause for the inter-model differences. Although the missing process has not yet been identified, we investigate different hypotheses on the basis of the characteristics of the discrepancy. An underestimated HCl uptake into the polar stratospheric cloud (PSC) particles that consist mainly of H2O and HNO3 cannot explain it due to the temperature correlation of the discrepancy. Also, a direct photolysis of particulate HNO3 does not resolve the discrepancy since it would also cause changes in chlorine chemistry in late winter which are not observed. The ionisation caused by galactic cosmic rays provides an additional NOx and HOx source that can explain only about 20% of the discrepancy. However, the model simulations show that a hypothetical decomposition of particulate HNO3 by some other process not dependent on the solar elevation, e.g. involving galactic cosmic rays, may be a possible mechanism to resolve the HCl discrepancy. Since the discrepancy reported here occurs during the beginning of the chlorine activation period, where the ozone loss rates are small, there is only a minor impact of about 2% on the overall ozone column loss over the course of Antarctic winter and spring.
000849790 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000849790 536__ $$0G:(DE-Juel1)jicg11_20090701$$aChemisches Lagrangesches Modell der Stratosphäre (CLaMS) (jicg11_20090701)$$cjicg11_20090701$$fChemisches Lagrangesches Modell der Stratosphäre (CLaMS)$$x1
000849790 588__ $$aDataset connected to CrossRef
000849790 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b1
000849790 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b2
000849790 7001_ $$0P:(DE-Juel1)159462$$aTritscher, Ines$$b3
000849790 7001_ $$0P:(DE-Juel1)129168$$aWegner, Tobias$$b4
000849790 7001_ $$00000-0002-6803-4149$$aChipperfield, Martyn P.$$b5
000849790 7001_ $$0P:(DE-HGF)0$$aFeng, Wuhu$$b6
000849790 7001_ $$0P:(DE-HGF)0$$aKinnison, Douglas E.$$b7
000849790 7001_ $$0P:(DE-HGF)0$$aMadronich, Sasha$$b8
000849790 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-8647-2018$$gVol. 18, no. 12, p. 8647 - 8666$$n12$$p8647 - 8666$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/acp-18-8647-2018.pdf$$yOpenAccess
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.gif?subformat=icon$$xicon
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-1440$$xicon-1440
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-180$$xicon-180
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-640$$xicon-640
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf?subformat=pdfa$$xpdfa
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/acp-18-8647-2018.gif?subformat=icon$$xicon$$yOpenAccess
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/acp-18-8647-2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/acp-18-8647-2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/acp-18-8647-2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000849790 8564_ $$uhttps://juser.fz-juelich.de/record/849790/files/acp-18-8647-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000849790 8767_ $$8Helmholtz-PUC-2018-22$$92018-07-02$$d2018-07-03$$eAPC$$jZahlung erfolgt$$pacp-2018-202
000849790 909CO $$ooai:juser.fz-juelich.de:849790$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000849790 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b0$$kFZJ
000849790 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b1$$kFZJ
000849790 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b2$$kFZJ
000849790 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159462$$aForschungszentrum Jülich$$b3$$kFZJ
000849790 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129168$$aForschungszentrum Jülich$$b4$$kFZJ
000849790 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000849790 9141_ $$y2018
000849790 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849790 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000849790 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849790 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000849790 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000849790 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000849790 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849790 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849790 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849790 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000849790 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000849790 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000849790 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849790 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849790 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000849790 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000849790 9801_ $$aAPC
000849790 9801_ $$aFullTexts
000849790 980__ $$ajournal
000849790 980__ $$aVDB
000849790 980__ $$aI:(DE-Juel1)IEK-7-20101013
000849790 980__ $$aI:(DE-82)080012_20140620
000849790 980__ $$aAPC
000849790 980__ $$aUNRESTRICTED
000849790 981__ $$aI:(DE-Juel1)ICE-4-20101013