000849793 001__ 849793
000849793 005__ 20240712101053.0
000849793 0247_ $$2doi$$a10.5194/acp-18-7345-2018
000849793 0247_ $$2ISSN$$a1680-7316
000849793 0247_ $$2ISSN$$a1680-7324
000849793 0247_ $$2Handle$$a2128/20050
000849793 0247_ $$2WOS$$aWOS:000433159600008
000849793 0247_ $$2altmetric$$aaltmetric:42594087
000849793 037__ $$aFZJ-2018-03905
000849793 082__ $$a550
000849793 1001_ $$0P:(DE-Juel1)157833$$aWang, Mingjin$$b0
000849793 245__ $$aCloud condensation nuclei activity of CaCO$_{3}$ particles with oleic acid and malonic acid coatings
000849793 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000849793 3367_ $$2DRIVER$$aarticle
000849793 3367_ $$2DataCite$$aOutput Types/Journal article
000849793 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542208288_15147
000849793 3367_ $$2BibTeX$$aARTICLE
000849793 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849793 3367_ $$00$$2EndNote$$aJournal Article
000849793 520__ $$aCondensation of carboxylic acids on mineral particles leads to coatings and impacts the particles' potential to act as cloud condensation nuclei (CCN). To determine how the CCN activity of mineral particles is impacted by carboxylic acid coatings, the CCN activities of CaCO3 particles and CaCO3 particles with oleic acid and malonic acid coatings were compared in this study. The results revealed that small amounts of oleic acid coating (volume fraction (vf) ≤ 4.3%) decreased the CCN activity of CaCO3 particles, while more oleic acid coating (vf ≥ 16%) increased the CCN activity of CaCO3 particles. This phenomenon has not been reported before. In contrast, the CCN activity of CaCO3 particles coated with malonic acid increased with the thickness of the malonic acid coating (vf = 0.4–40%). Even the smallest amounts of malonic acid coating (vf = 0.4%) significantly enhanced the CCN activity of CaCO3 particles from κ = 0.0028±0.0001 to κ = 0.0123±0.0005. This indicates that a small amount of water-soluble organic acid coating may significantly enhance the CCN activity of mineral particles. The presence of water vapor during the coating process with malonic acid additionally increased the CCN activity of the coated CaCO3 particles, probably because more CaCO3 reacts with malonic acid when sufficient water is available.
000849793 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000849793 588__ $$aDataset connected to CrossRef
000849793 7001_ $$0P:(DE-HGF)0$$aZhu, Tong$$b1$$eCorresponding author
000849793 7001_ $$0P:(DE-Juel1)136801$$aZhao, Defeng$$b2
000849793 7001_ $$00000-0002-6144-2799$$aRubach, Florian$$b3
000849793 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b4
000849793 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b5
000849793 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b6$$eCorresponding author
000849793 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-7345-2018$$gVol. 18, no. 10, p. 7345 - 7359$$n10$$p7345 - 7359$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/acp-18-7345-2018.pdf$$yOpenAccess
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.gif?subformat=icon$$xicon
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-1440$$xicon-1440
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-180$$xicon-180
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-640$$xicon-640
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf?subformat=pdfa$$xpdfa
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/acp-18-7345-2018.gif?subformat=icon$$xicon$$yOpenAccess
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/acp-18-7345-2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/acp-18-7345-2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/acp-18-7345-2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000849793 8564_ $$uhttps://juser.fz-juelich.de/record/849793/files/acp-18-7345-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000849793 8767_ $$8Helmholtz-PUC-2018-22$$92018-07-02$$d2018-07-03$$eAPC$$jZahlung erfolgt$$pacp-2017-897
000849793 909CO $$ooai:juser.fz-juelich.de:849793$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000849793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157833$$aForschungszentrum Jülich$$b0$$kFZJ
000849793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136801$$aForschungszentrum Jülich$$b2$$kFZJ
000849793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b4$$kFZJ
000849793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b5$$kFZJ
000849793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich$$b6$$kFZJ
000849793 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000849793 9141_ $$y2018
000849793 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000849793 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849793 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849793 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000849793 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000849793 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000849793 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849793 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849793 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849793 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000849793 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000849793 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000849793 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849793 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849793 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000849793 9801_ $$aAPC
000849793 9801_ $$aFullTexts
000849793 980__ $$ajournal
000849793 980__ $$aVDB
000849793 980__ $$aUNRESTRICTED
000849793 980__ $$aI:(DE-Juel1)IEK-8-20101013
000849793 980__ $$aAPC
000849793 981__ $$aI:(DE-Juel1)ICE-3-20101013