001     849813
005     20240711092308.0
024 7 _ |a 10.1016/j.mtcomm.2018.04.005
|2 doi
024 7 _ |a WOS:000433296700044
|2 WOS
037 _ _ |a FZJ-2018-03916
082 _ _ |a 620
100 1 _ |a Becker, Julia
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Alloying effects in Mo-5X (X=Zr, Ti,V) – Microstructural modifications and mechanical properties
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1530854753_1981
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The microstructures and mechanical properties of three different cast Mo-5X (X = Zr, Ti, V) alloys were investigated. The alloys Mo-5Ti and Mo-5V show a single-phase solid solution microstructure, whereas the Mo-5Zr alloy exhibits polycrystalline Mo2Zr phases embedded in the Mo(Zr) solid solution matrix. Microhardness measurements were carried out by the Vickers indentation method. Compared to the single-phase solid solution alloys the Mo2Zr precipitations in Mo-5Zr result in the highest microhardness. Based on a well-known solid solution model it was shown that Zr, Ti and V are effective solid solution strengtheners. Additionally, constant displacement tests in the compressive mode between room temperature and 1100 °C confirm these findings. However, the homogeneously distributed Mo2Zr phases offer an extraordinary potential to improve the high temperature strength of Mo-based alloys.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Betke, Ulf
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wessel, Egbert
|0 P:(DE-Juel1)129810
|b 2
700 1 _ |a Krüger, Manja
|0 P:(DE-Juel1)172056
|b 3
773 _ _ |a 10.1016/j.mtcomm.2018.04.005
|g Vol. 15, p. 314 - 321
|0 PERI:(DE-600)2829441-5
|p 314 - 321
|t Materials today / Communications
|v 15
|y 2018
|x 2352-4928
856 4 _ |u https://juser.fz-juelich.de/record/849813/files/1-s2.0-S2352492818300072-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849813/files/1-s2.0-S2352492818300072-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849813/files/1-s2.0-S2352492818300072-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849813/files/1-s2.0-S2352492818300072-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849813/files/1-s2.0-S2352492818300072-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849813/files/1-s2.0-S2352492818300072-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:849813
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172056
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21