000849816 001__ 849816
000849816 005__ 20240709094428.0
000849816 0247_ $$2doi$$a10.1177/0309324718761305
000849816 0247_ $$2ISSN$$a0309-3247
000849816 0247_ $$2ISSN$$a2041-3130
000849816 0247_ $$2WOS$$aWOS:000432135300007
000849816 037__ $$aFZJ-2018-03919
000849816 082__ $$a620
000849816 1001_ $$0P:(DE-HGF)0$$aNordmann, Joachim$$b0
000849816 245__ $$aAnalysis of iron aluminide coated beams under creep conditions in high-temperature four-point bending tests
000849816 260__ $$aLondon$$bSage Publ.$$c2018
000849816 3367_ $$2DRIVER$$aarticle
000849816 3367_ $$2DataCite$$aOutput Types/Journal article
000849816 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530855136_18315
000849816 3367_ $$2BibTeX$$aARTICLE
000849816 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849816 3367_ $$00$$2EndNote$$aJournal Article
000849816 520__ $$aRecent research is focused on the possibility to coat a metallic alloy with intermetallics or ceramics to improve wear and corrosion resistance, as well as creep behaviour at high temperatures, next to other properties of the alloy. Nowadays, this gains importance due to stricter environment guidelines. Here, we present a model to describe a non-symmetric compound in a high-temperature four-point bending test, performed at 400°C. The substrate material is an aluminium alloy AlSi10MgT6, and the coating material is the iron aluminide Fe24Al0.6Nb. Up next, a layer-wise theory is introduced to calculate the forces between substrate and coating. Furthermore, required material parameters are identified, and a new procedure to determine Young’s modulus of a coating is presented. Finally, simulation results are compared to experimental data, illustrating that the presented model is able to describe the material behaviour accurately.
000849816 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000849816 588__ $$aDataset connected to CrossRef
000849816 7001_ $$0P:(DE-HGF)0$$aThiem, Philipp$$b1
000849816 7001_ $$0P:(DE-HGF)0$$aCinca, Nuria$$b2
000849816 7001_ $$0P:(DE-HGF)0$$aNaumenko, Konstantin$$b3
000849816 7001_ $$0P:(DE-Juel1)172056$$aKrüger, Manja$$b4$$eCorresponding author$$ufzj
000849816 773__ $$0PERI:(DE-600)2015328-4$$a10.1177/0309324718761305$$gVol. 53, no. 4, p. 255 - 265$$n4$$p255 - 265$$tThe @journal of strain analysis for engineering design$$v53$$x2041-3130$$y2018
000849816 909CO $$ooai:juser.fz-juelich.de:849816$$pVDB
000849816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172056$$aForschungszentrum Jülich$$b4$$kFZJ
000849816 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000849816 9141_ $$y2018
000849816 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000849816 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000849816 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STRAIN ANAL ENG : 2015
000849816 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849816 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849816 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849816 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849816 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849816 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000849816 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849816 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000849816 980__ $$ajournal
000849816 980__ $$aVDB
000849816 980__ $$aI:(DE-Juel1)IEK-2-20101013
000849816 980__ $$aUNRESTRICTED
000849816 981__ $$aI:(DE-Juel1)IMD-1-20101013