000849856 001__ 849856
000849856 005__ 20210129234320.0
000849856 0247_ $$2doi$$a10.1007/s00429-018-1697-y
000849856 0247_ $$2ISSN$$a0340-2061
000849856 0247_ $$2ISSN$$a1432-0568
000849856 0247_ $$2ISSN$$a1863-2653
000849856 0247_ $$2ISSN$$a1863-2661
000849856 0247_ $$2pmid$$apmid:29948193
000849856 0247_ $$2WOS$$aWOS:000443296300023
000849856 0247_ $$2altmetric$$aaltmetric:44721605
000849856 037__ $$aFZJ-2018-03958
000849856 082__ $$a610
000849856 1001_ $$0P:(DE-Juel1)141935$$aRosenberg, Jessica$$b0$$eCorresponding author
000849856 245__ $$aChronotype differences in cortical thickness: grey matter reflects when you go to bed
000849856 260__ $$aBerlin$$bSpringer$$c2018
000849856 3367_ $$2DRIVER$$aarticle
000849856 3367_ $$2DataCite$$aOutput Types/Journal article
000849856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536758662_5304
000849856 3367_ $$2BibTeX$$aARTICLE
000849856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849856 3367_ $$00$$2EndNote$$aJournal Article
000849856 520__ $$aBased on individual circadian cycles and associated cognitive rhythms, humans can be classified via standardised self-reports as being early (EC), late (LC) and intermediate (IC) chronotypes. Alterations in neural cortical structure underlying these chronotype differences have rarely been investigated and are the scope of this study. 16 healthy male ECs, 16 ICs and 16 LCs were measured with a 3 T MAGNETOM TIM TRIO (Siemens, Erlangen) scanner using a magnetization prepared rapid gradient echo sequence. Data were analysed by applying voxel-based morphometry (VBM) and vertex-wise cortical thickness (CTh) analysis. VBM analysis revealed that ECs showed significantly lower grey matter volumes bilateral in the lateral occipital cortex and the precuneus as compared to LCs, and in the right lingual gyrus, occipital fusiform gyrus and the occipital pole as compared to ICs. CTh findings showed lower grey matter volumes for ECs in the left anterior insula, precuneus, inferior parietal cortex, and right pars triangularis than for LCs, and in the right superior parietal gyrus than for ICs. These findings reveal that chronotype differences are associated with specific neural substrates of cortical thickness, surface areas, and folding. We conclude that this might be the basis for chronotype differences in behaviour and brain function. Furthermore, our results speak for the necessity of considering “chronotype” as a potentially modulating factor in all kinds of structural brain-imaging experiments.
000849856 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000849856 588__ $$aDataset connected to CrossRef
000849856 7001_ $$0P:(DE-HGF)0$$aJacobs, Heidi I. L.$$b1
000849856 7001_ $$0P:(DE-HGF)0$$aMaximov, Ivan I.$$b2
000849856 7001_ $$0P:(DE-Juel1)140116$$aReske, Martina$$b3
000849856 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b4
000849856 773__ $$0PERI:(DE-600)2303775-1$$a10.1007/s00429-018-1697-y$$n7$$p3411–3421$$tBrain structure & function$$v223$$x1863-2661$$y2018
000849856 8564_ $$uhttps://juser.fz-juelich.de/record/849856/files/Rosenberg2018_Article_ChronotypeDifferencesInCortica.pdf$$yRestricted
000849856 8564_ $$uhttps://juser.fz-juelich.de/record/849856/files/Rosenberg2018_Article_ChronotypeDifferencesInCortica.pdf?subformat=pdfa$$xpdfa$$yRestricted
000849856 909CO $$ooai:juser.fz-juelich.de:849856$$pVDB
000849856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141935$$aForschungszentrum Jülich$$b0$$kFZJ
000849856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000849856 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b1
000849856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000849856 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-4$$b2
000849856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140116$$aForschungszentrum Jülich$$b3$$kFZJ
000849856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b4$$kFZJ
000849856 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000849856 9141_ $$y2018
000849856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849856 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000849856 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849856 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STRUCT FUNCT : 2015
000849856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849856 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849856 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849856 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000849856 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000849856 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000849856 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRAIN STRUCT FUNCT : 2015
000849856 920__ $$lyes
000849856 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000849856 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000849856 980__ $$ajournal
000849856 980__ $$aVDB
000849856 980__ $$aI:(DE-Juel1)INM-3-20090406
000849856 980__ $$aI:(DE-Juel1)INM-4-20090406
000849856 980__ $$aUNRESTRICTED