001     849902
005     20210129234332.0
024 7 _ |a 10.1007/s00330-018-5505-0
|2 doi
024 7 _ |a 0938-7994
|2 ISSN
024 7 _ |a 1432-1084
|2 ISSN
024 7 _ |a 1613-3749
|2 ISSN
024 7 _ |a 1613-3757
|2 ISSN
024 7 _ |a pmid:29948072
|2 pmid
024 7 _ |a WOS:000451353500004
|2 WOS
024 7 _ |a altmetric:44236947
|2 altmetric
037 _ _ |a FZJ-2018-04000
082 _ _ |a 610
100 1 _ |a Rubbert, Christian
|0 0000-0002-9461-1173
|b 0
|e Corresponding author
245 _ _ |a Prediction of outcome after aneurysmal subarachnoid haemorrhage using data from patient admission
260 _ _ |a Berlin
|c -
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1541669151_28960
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Editing assistance of an earlier version of the manuscript: Bonnie Hami, M.A. (Cleveland, OH, USA).
520 _ _ |a The pathogenesis leading to poor functional outcome after aneurysmal subarachnoid haemorrhage (aSAH) is multifactorial and not fully understood. We evaluated a machine learning approach based on easily determinable clinical and CT perfusion (CTP) features in the course of patient admission to predict the functional outcome 6 months after ictus.METHODS:Out of 630 consecutive subarachnoid haemorrhage patients (2008-2015), 147 (mean age 54.3, 66.7% women) were retrospectively included (Inclusion: aSAH, admission within 24 h of ictus, CTP within 24 h of admission, documented modified Rankin scale (mRS) grades after 6 months. Exclusion: occlusive therapy before first CTP, previous aSAH, CTP not evaluable). A random forests model with conditional inference trees was optimised and trained on sex, age, World Federation of Neurosurgical Societies (WFNS) and modified Fisher grades, aneurysm in anterior vs. posterior circulation, early external ventricular drainage (EVD), as well as MTT and Tmax maximum, mean, standard deviation (SD), range, 75th quartile and interquartile range to predict dichotomised mRS (≤ 2; > 2). Performance was assessed using the balanced accuracy over the training and validation folds using 20 repeats of 10-fold cross-validation.RESULTS:In the final model, using 200 trees and the synthetic minority oversampling technique, median balanced accuracy was 84.4% (SD 0.7) over the training folds and 70.9% (SD 1.2) over the validation folds. The five most important features were the modified Fisher grade, age, MTT range, WFNS and early EVD.CONCLUSIONS:A random forests model trained on easily determinable features in the course of patient admission can predict the functional outcome 6 months after aSAH with considerable accuracy.KEY POINTS:• Features determinable in the course of admission of a patient with aneurysmal subarachnoid haemorrhage (aSAH) can predict the functional outcome 6 months after the occurrence of aSAH. • The top five predictive features were the modified Fisher grade, age, the mean transit time (MTT) range from computed tomography perfusion (CTP), the WFNS grade and the early necessity for an external ventricular drainage (EVD). • The range between the minimum and the maximum MTT may prove to be a valuable biomarker for detrimental functional outcome.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 1
|u fzj
700 1 _ |a Beseoglu, Kerim
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mathys, Christian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a May, Rebecca
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kaschner, Marius G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sigl, Benjamin
|0 P:(DE-Juel1)171897
|b 6
|u fzj
700 1 _ |a Teichert, Nikolas A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Boos, Johannes
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Turowski, Bernd
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Caspers, Julian
|0 P:(DE-Juel1)144344
|b 10
773 _ _ |a 10.1007/s00330-018-5505-0
|0 PERI:(DE-600)1472718-3
|n 12
|p 4949–4958
|t European radiology
|v 28
|y -
|x 1432-1084
856 4 _ |u https://juser.fz-juelich.de/record/849902/files/Rubbert2018_Article_PredictionOfOutcomeAfterAneury-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849902/files/Rubbert2018_Article_PredictionOfOutcomeAfterAneury-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:849902
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171897
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR RADIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21