000849919 001__ 849919
000849919 005__ 20210129234337.0
000849919 0247_ $$2doi$$a10.1111/rssc.12295
000849919 0247_ $$2ISSN$$a0035-9254
000849919 0247_ $$2ISSN$$a0570-4936
000849919 0247_ $$2ISSN$$a1467-9876
000849919 0247_ $$2Handle$$a2128/21039
000849919 0247_ $$2WOS$$aWOS:000453687800011
000849919 0247_ $$2altmetric$$aaltmetric:53052341
000849919 0247_ $$2pmid$$apmid:30906075
000849919 037__ $$aFZJ-2018-04015
000849919 082__ $$a510
000849919 1001_ $$0P:(DE-HGF)0$$aSamartsidis, Pantelis$$b0$$eCorresponding author
000849919 245__ $$aBayesian log-Gaussian Cox process regression: applications to meta-analysis of neuroimaging working memory studies
000849919 260__ $$aOxford$$bWiley-Blackwell$$c2019
000849919 3367_ $$2DRIVER$$aarticle
000849919 3367_ $$2DataCite$$aOutput Types/Journal article
000849919 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545299492_3475
000849919 3367_ $$2BibTeX$$aARTICLE
000849919 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849919 3367_ $$00$$2EndNote$$aJournal Article
000849919 500__ $$aThis work was largely completed while PS and TEN were at the University of Warwick, De-partment of Statistics. PS, TDJ and TEN were supported by National Institutes of Health grant5-R01-NS-075066; TEN was supported by Wellcome Trust fellowship 100309/Z/12/Z and Na-tional Institutes of Health grant R01 2R01EB015611-04. The work that is presented in thispaper represents the views of the authors and not necessarily those of the National Institutesof Health or the Wellcome Trust Foundation
000849919 520__ $$aWorking memory (WM) was one of the first cognitive processes studied with func-tional magnetic resonance imaging. With now over 20 years of studies on WM, each study withtiny sample sizes, there is a need for meta-analysis to identify the brain regions that are con-sistently activated by WM tasks, and to understand the interstudy variation in those activations.However, current methods in the field cannot fully account for the spatial nature of neuroimagingmeta-analysis data or the heterogeneity observed among WM studies. In this work, we proposea fully Bayesian random-effects metaregression model based on log-Gaussian Cox processes,which can be used for meta-analysis of neuroimaging studies. An efficient Markov chain MonteCarlo scheme for posterior simulations is presented which makes use of some recent advancesin parallel computing using graphics processing units. Application of the proposed model to areal data set provides valuable insights regarding the function of the WM.Keywords:   Functional magnetic resonance imaging; Metaregression; Random-effectsmeta-analysis; Working memory
000849919 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000849919 588__ $$aDataset connected to CrossRef
000849919 7001_ $$0P:(DE-Juel1)174483$$aEickhoff, Claudia$$b1$$ufzj
000849919 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b2$$ufzj
000849919 7001_ $$0P:(DE-HGF)0$$aWager, Tor D.$$b3
000849919 7001_ $$0P:(DE-HGF)0$$aBarrett, Lisa Feldman$$b4
000849919 7001_ $$0P:(DE-HGF)0$$aAtzil, Shir$$b5
000849919 7001_ $$0P:(DE-HGF)0$$aJohnson, Timothy D.$$b6
000849919 7001_ $$0P:(DE-HGF)0$$aNichols, Thomas E.$$b7
000849919 773__ $$0PERI:(DE-600)1482300-7$$a10.1111/rssc.12295$$n1$$p217-234$$tJournal of the Royal Statistical Society / C$$v68$$x0035-9254$$y-
000849919 8564_ $$uhttps://juser.fz-juelich.de/record/849919/files/Samartsidis_et_al-2019-Journal_of_the_Royal_Statistical_Society__Series_C_%28Applied_Statistics%29.pdf$$yOpenAccess
000849919 8564_ $$uhttps://juser.fz-juelich.de/record/849919/files/Samartsidis_et_al-2019-Journal_of_the_Royal_Statistical_Society__Series_C_%28Applied_Statistics%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000849919 909CO $$ooai:juser.fz-juelich.de:849919$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000849919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174483$$aForschungszentrum Jülich$$b1$$kFZJ
000849919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b2$$kFZJ
000849919 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000849919 9141_ $$y2019
000849919 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849919 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000849919 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ R STAT SOC C-APPL : 2015
000849919 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849919 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849919 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849919 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849919 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000849919 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849919 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000849919 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849919 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849919 920__ $$lyes
000849919 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000849919 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000849919 980__ $$ajournal
000849919 980__ $$aVDB
000849919 980__ $$aUNRESTRICTED
000849919 980__ $$aI:(DE-Juel1)INM-7-20090406
000849919 980__ $$aI:(DE-Juel1)INM-1-20090406
000849919 9801_ $$aFullTexts