001     849919
005     20210129234337.0
024 7 _ |a 10.1111/rssc.12295
|2 doi
024 7 _ |a 0035-9254
|2 ISSN
024 7 _ |a 0570-4936
|2 ISSN
024 7 _ |a 1467-9876
|2 ISSN
024 7 _ |a 2128/21039
|2 Handle
024 7 _ |a WOS:000453687800011
|2 WOS
024 7 _ |a altmetric:53052341
|2 altmetric
024 7 _ |a pmid:30906075
|2 pmid
037 _ _ |a FZJ-2018-04015
082 _ _ |a 510
100 1 _ |a Samartsidis, Pantelis
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Bayesian log-Gaussian Cox process regression: applications to meta-analysis of neuroimaging working memory studies
260 _ _ |a Oxford
|c 2019
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1545299492_3475
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work was largely completed while PS and TEN were at the University of Warwick, De-partment of Statistics. PS, TDJ and TEN were supported by National Institutes of Health grant5-R01-NS-075066; TEN was supported by Wellcome Trust fellowship 100309/Z/12/Z and Na-tional Institutes of Health grant R01 2R01EB015611-04. The work that is presented in thispaper represents the views of the authors and not necessarily those of the National Institutesof Health or the Wellcome Trust Foundation
520 _ _ |a Working memory (WM) was one of the first cognitive processes studied with func-tional magnetic resonance imaging. With now over 20 years of studies on WM, each study withtiny sample sizes, there is a need for meta-analysis to identify the brain regions that are con-sistently activated by WM tasks, and to understand the interstudy variation in those activations.However, current methods in the field cannot fully account for the spatial nature of neuroimagingmeta-analysis data or the heterogeneity observed among WM studies. In this work, we proposea fully Bayesian random-effects metaregression model based on log-Gaussian Cox processes,which can be used for meta-analysis of neuroimaging studies. An efficient Markov chain MonteCarlo scheme for posterior simulations is presented which makes use of some recent advancesin parallel computing using graphics processing units. Application of the proposed model to areal data set provides valuable insights regarding the function of the WM.Keywords: Functional magnetic resonance imaging; Metaregression; Random-effectsmeta-analysis; Working memory
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Eickhoff, Claudia
|0 P:(DE-Juel1)174483
|b 1
|u fzj
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 2
|u fzj
700 1 _ |a Wager, Tor D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Barrett, Lisa Feldman
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Atzil, Shir
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Johnson, Timothy D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nichols, Thomas E.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1111/rssc.12295
|0 PERI:(DE-600)1482300-7
|n 1
|p 217-234
|t Journal of the Royal Statistical Society / C
|v 68
|y -
|x 0035-9254
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/849919/files/Samartsidis_et_al-2019-Journal_of_the_Royal_Statistical_Society__Series_C_%28Applied_Statistics%29.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/849919/files/Samartsidis_et_al-2019-Journal_of_the_Royal_Statistical_Society__Series_C_%28Applied_Statistics%29.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:849919
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J R STAT SOC C-APPL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21