001     849922
005     20240619083547.0
037 _ _ |a FZJ-2018-04018
041 _ _ |a English
100 1 _ |a Niether, Doreen
|0 P:(DE-Juel1)166572
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Twentieth Symposium on Thermophysical Properties
|c Boulder
|d 2018-06-24 - 2018-06-29
|w USA
245 _ _ |a Thermophoresis and the 'Origin-Of-Life' Concept
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1545234299_18403
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Formamide is of special interest in the 'origin-of-life' concept, because it was shown to form a number of prebiotic molecules under catalytic conditions and at sufficiently high concentrations [1]. For nucleotides and short DNA strands, numerical finite-element calculations have shown that a high degree of accumulation in hydrothermal pores occurs [2]. Using thermophoretic data of the formamide/water system measured with Infra-Red Thermal Diffusion Forced Rayleigh Scattering (IR-TDFRS) we show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations high enough to initiate synthesis of prebiotic nucleobases. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behaviour of formamide. Starting with a formamide concentration of 10-3 wt%, estimated to be typical in shallow lakes on early earth, the accumulation-fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of approximately 85 wt% at large aspect ratios [3]. Time dependent studies show that these high concentrations are reached after 45-90 days. Further, we derived a heuristic model to illuminate the accumulation process and understand the dependence of the accumulation on pore geometry [4].[1] Pino, S.; Sponer, J. E.; Costanzo, G.; Saladino, R. and Di Mauro, E.; Life, 5, 372-384, 2015. [2] Baaske, P.; Weinert, F. M.; Duhr, S.; Lemke, K. H.; Russell, M. J. and Braun,D.; Proc. Natl. Acad. Sci. USA, 104, 9346-9351, 2007. [3] Niether, D.; Afanasenkau, D.; Dhont, J.K.G.; Wiegand, S.; Proc. Natl. Acad. Sci. USA, 113, 4272–4277, 2016.[4]Niether, D.; Wiegand, S.; Entropy, 19(33),2017.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
700 1 _ |a Afanasenkau, Dzmitry
|0 P:(DE-Juel1)144600
|b 1
700 1 _ |a Dhont, Jan K.G.
|0 P:(DE-Juel1)130616
|b 2
|u fzj
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 3
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/849922/files/abstract-boulder-Thermophoreris%20and%20the%20Origin-of-Life%20concept.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849922/files/abstract-boulder-Thermophoreris%20and%20the%20Origin-of-Life%20concept.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:849922
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130616
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21