000849923 001__ 849923 000849923 005__ 20240619083547.0 000849923 0247_ $$2Handle$$a2128/20994 000849923 037__ $$aFZJ-2018-04019 000849923 041__ $$aEnglish 000849923 1001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b0$$ufzj 000849923 1112_ $$aTwentieth Symposium on Thermophysical Properties$$cBoulder$$d2018-06-24 - 2018-06-29$$wUSA 000849923 245__ $$aThermodiffusion as a Probe of Protein Ligand Binding 000849923 260__ $$c2018 000849923 3367_ $$033$$2EndNote$$aConference Paper 000849923 3367_ $$2DataCite$$aOther 000849923 3367_ $$2BibTeX$$aINPROCEEDINGS 000849923 3367_ $$2DRIVER$$aconferenceObject 000849923 3367_ $$2ORCID$$aLECTURE_SPEECH 000849923 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1545289792_26509$$xInvited 000849923 520__ $$aMolecular recognition via protein-ligand interactions is of fundamental importance to numerous processes in living organisms. The behaviour of biomolecules in a temperature gradient, known as thermodiffusion or thermophoresis, changes when a ligand binds. Microscale thermophoresis (MST) uses this sensitivity of the thermophoretic response to access information on binding dynamics, although the physicochemical processes are still unclear [1]. Additionally, thermophoresis is promising as a tool to gain information on the hydration layer and how it changes due to complex formation. We use infra-red thermal diffusion forced Rayleigh scattering (IR-TDFRS) in a temperature range from 10 to 50°C to investigate the thermodiffusion properties. In previous studies [2] we used cyclodextrin-aspirin as a model system for complexes and showed that the temperature dependence of the thermodiffusion behaviour is sensitive to solute-solvent interactions. Now we shift our focus to the protein streptavidin (SA) and its biotin complex. Similar to the cyclodextrins, formation of the SA-biotin complex leads to a weaker temperature sensitivity of the thermodiffusion behaviour, although the effect is more pronounced. This indicates a less hydrophilic complex. To quantify the influence of structural fluctuations and conformational motion of the protein on the entropy change of its hydration layer upon ligand binding, we combine quasi-elastic incoherent neutron scattering (QENS) and isothermal titration calorimetry (ITC) data. As the QENS measurements are only possible in heavy water, the ITC need to be performed in heavy water as well in order to gain a better understanding of the hydration layer. The aim of this work is to develop a microscopic understanding of the correlation between the strength of solute-solvent interactions and the thermophoretic behaviour.[1] M. Jerabek-Willemsen et al., J. Mol. Struct. (2014).[2] D. Niether et al., Langmuir 33(34), 8483-8492 (2017). 000849923 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000849923 7001_ $$0P:(DE-Juel1)171618$$aSarter, Mona$$b1$$ufzj 000849923 7001_ $$0P:(DE-Juel1)132009$$aKönig, Bernd$$b2$$ufzj 000849923 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b3$$ufzj 000849923 7001_ $$0P:(DE-Juel1)131961$$aFitter, Jörg$$b4$$ufzj 000849923 7001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas$$b5$$eCorresponding author$$ufzj 000849923 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b6$$ufzj 000849923 8564_ $$uhttps://juser.fz-juelich.de/record/849923/files/abstract-boulder-protein-ligand-binding.pdf$$yOpenAccess 000849923 8564_ $$uhttps://juser.fz-juelich.de/record/849923/files/abstract-boulder-protein-ligand-binding.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000849923 909CO $$ooai:juser.fz-juelich.de:849923$$pdriver$$pVDB$$popen_access$$popenaire 000849923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166572$$aForschungszentrum Jülich$$b0$$kFZJ 000849923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171618$$aForschungszentrum Jülich$$b1$$kFZJ 000849923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132009$$aForschungszentrum Jülich$$b2$$kFZJ 000849923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b3$$kFZJ 000849923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131961$$aForschungszentrum Jülich$$b4$$kFZJ 000849923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b5$$kFZJ 000849923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b6$$kFZJ 000849923 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000849923 9141_ $$y2018 000849923 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000849923 920__ $$lyes 000849923 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0 000849923 9801_ $$aFullTexts 000849923 980__ $$aconf 000849923 980__ $$aVDB 000849923 980__ $$aUNRESTRICTED 000849923 980__ $$aI:(DE-Juel1)ICS-3-20110106