001     849923
005     20240619083547.0
024 7 _ |a 2128/20994
|2 Handle
037 _ _ |a FZJ-2018-04019
041 _ _ |a English
100 1 _ |a Niether, Doreen
|0 P:(DE-Juel1)166572
|b 0
|u fzj
111 2 _ |a Twentieth Symposium on Thermophysical Properties
|c Boulder
|d 2018-06-24 - 2018-06-29
|w USA
245 _ _ |a Thermodiffusion as a Probe of Protein Ligand Binding
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1545289792_26509
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Molecular recognition via protein-ligand interactions is of fundamental importance to numerous processes in living organisms. The behaviour of biomolecules in a temperature gradient, known as thermodiffusion or thermophoresis, changes when a ligand binds. Microscale thermophoresis (MST) uses this sensitivity of the thermophoretic response to access information on binding dynamics, although the physicochemical processes are still unclear [1]. Additionally, thermophoresis is promising as a tool to gain information on the hydration layer and how it changes due to complex formation. We use infra-red thermal diffusion forced Rayleigh scattering (IR-TDFRS) in a temperature range from 10 to 50°C to investigate the thermodiffusion properties. In previous studies [2] we used cyclodextrin-aspirin as a model system for complexes and showed that the temperature dependence of the thermodiffusion behaviour is sensitive to solute-solvent interactions. Now we shift our focus to the protein streptavidin (SA) and its biotin complex. Similar to the cyclodextrins, formation of the SA-biotin complex leads to a weaker temperature sensitivity of the thermodiffusion behaviour, although the effect is more pronounced. This indicates a less hydrophilic complex. To quantify the influence of structural fluctuations and conformational motion of the protein on the entropy change of its hydration layer upon ligand binding, we combine quasi-elastic incoherent neutron scattering (QENS) and isothermal titration calorimetry (ITC) data. As the QENS measurements are only possible in heavy water, the ITC need to be performed in heavy water as well in order to gain a better understanding of the hydration layer. The aim of this work is to develop a microscopic understanding of the correlation between the strength of solute-solvent interactions and the thermophoretic behaviour.[1] M. Jerabek-Willemsen et al., J. Mol. Struct. (2014).[2] D. Niether et al., Langmuir 33(34), 8483-8492 (2017).
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
700 1 _ |a Sarter, Mona
|0 P:(DE-Juel1)171618
|b 1
|u fzj
700 1 _ |a König, Bernd
|0 P:(DE-Juel1)132009
|b 2
|u fzj
700 1 _ |a Zamponi, Michaela
|0 P:(DE-Juel1)131056
|b 3
|u fzj
700 1 _ |a Fitter, Jörg
|0 P:(DE-Juel1)131961
|b 4
|u fzj
700 1 _ |a Stadler, Andreas
|0 P:(DE-Juel1)140278
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 6
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/849923/files/abstract-boulder-protein-ligand-binding.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/849923/files/abstract-boulder-protein-ligand-binding.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:849923
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171618
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132009
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131056
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)140278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21