000849931 001__ 849931
000849931 005__ 20210129234343.0
000849931 0247_ $$2doi$$a10.1016/j.epsr.2017.12.034
000849931 0247_ $$2ISSN$$a0378-7796
000849931 0247_ $$2ISSN$$a1873-2046
000849931 0247_ $$2Handle$$a2128/19616
000849931 0247_ $$2WOS$$aWOS:000428104700012
000849931 0247_ $$2altmetric$$aaltmetric:18567717
000849931 037__ $$aFZJ-2018-04026
000849931 082__ $$a620
000849931 1001_ $$0P:(DE-HGF)0$$aHörsch, Jonas$$b0
000849931 245__ $$aLinear optimal power flow using cycle flows
000849931 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000849931 3367_ $$2DRIVER$$aarticle
000849931 3367_ $$2DataCite$$aOutput Types/Journal article
000849931 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536148042_461
000849931 3367_ $$2BibTeX$$aARTICLE
000849931 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849931 3367_ $$00$$2EndNote$$aJournal Article
000849931 520__ $$aLinear optimal power flow (LOPF) algorithms use a linearization of the alternating current (AC) load flow equations to optimize generator dispatch in a network subject to the loading constraints of the network branches. Common algorithms use the voltage angles at the buses as optimization variables, but alternatives can be computationally advantageous. In this article we provide a review of existing methods and describe a new formulation that expresses the loading constraints directly in terms of the flows themselves, using a decomposition of the network graph into a spanning tree and closed cycles. We provide a comprehensive study of the computational performance of the various formulations, in settings that include computationally challenging applications such as multi-period LOPF with storage dispatch and generation capacity expansion. We show that the new formulation of the LOPF solves up to 7 times faster than the angle formulation using a commercial linear programming solver, while another existing cycle-base formulation solves up to 20 times faster, with an average speed-up of factor 3 for the standard networks considered here. If generation capacities are also optimized, the average speed-up rises to a factor of 12, reaching up to factor 213 in a particular instance. The speed-up is largest for networks with many buses and decentral generators throughout the network, which is highly relevant given the rise of distributed renewable generation and the computational challenge of operation and planning in such networks.
000849931 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000849931 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x1
000849931 536__ $$0G:(Grant)PIK_082017$$aCoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017)$$cPIK_082017$$x2
000849931 588__ $$aDataset connected to CrossRef
000849931 7001_ $$0P:(DE-HGF)0$$aRonellenfitsch, Henrik$$b1
000849931 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b2$$ufzj
000849931 7001_ $$0P:(DE-HGF)0$$aBrown, Tom$$b3$$eCorresponding author
000849931 773__ $$0PERI:(DE-600)1502242-0$$a10.1016/j.epsr.2017.12.034$$gVol. 158, p. 126 - 135$$p126 - 135$$tElectric power systems research$$v158$$x0378-7796$$y2018
000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/1-s2.0-S0378779617305138-main.pdf$$yRestricted
000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/1-s2.0-S0378779617305138-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.pdf$$yOpenAccess
000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.gif?subformat=icon$$xicon$$yOpenAccess
000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000849931 909CO $$ooai:juser.fz-juelich.de:849931$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000849931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b2$$kFZJ
000849931 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000849931 9141_ $$y2018
000849931 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849931 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000849931 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849931 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTR POW SYST RES : 2015
000849931 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849931 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849931 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849931 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000849931 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849931 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849931 920__ $$lno
000849931 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000849931 980__ $$ajournal
000849931 980__ $$aVDB
000849931 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000849931 980__ $$aUNRESTRICTED
000849931 9801_ $$aFullTexts