000849931 001__ 849931 000849931 005__ 20210129234343.0 000849931 0247_ $$2doi$$a10.1016/j.epsr.2017.12.034 000849931 0247_ $$2ISSN$$a0378-7796 000849931 0247_ $$2ISSN$$a1873-2046 000849931 0247_ $$2Handle$$a2128/19616 000849931 0247_ $$2WOS$$aWOS:000428104700012 000849931 0247_ $$2altmetric$$aaltmetric:18567717 000849931 037__ $$aFZJ-2018-04026 000849931 082__ $$a620 000849931 1001_ $$0P:(DE-HGF)0$$aHörsch, Jonas$$b0 000849931 245__ $$aLinear optimal power flow using cycle flows 000849931 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018 000849931 3367_ $$2DRIVER$$aarticle 000849931 3367_ $$2DataCite$$aOutput Types/Journal article 000849931 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536148042_461 000849931 3367_ $$2BibTeX$$aARTICLE 000849931 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000849931 3367_ $$00$$2EndNote$$aJournal Article 000849931 520__ $$aLinear optimal power flow (LOPF) algorithms use a linearization of the alternating current (AC) load flow equations to optimize generator dispatch in a network subject to the loading constraints of the network branches. Common algorithms use the voltage angles at the buses as optimization variables, but alternatives can be computationally advantageous. In this article we provide a review of existing methods and describe a new formulation that expresses the loading constraints directly in terms of the flows themselves, using a decomposition of the network graph into a spanning tree and closed cycles. We provide a comprehensive study of the computational performance of the various formulations, in settings that include computationally challenging applications such as multi-period LOPF with storage dispatch and generation capacity expansion. We show that the new formulation of the LOPF solves up to 7 times faster than the angle formulation using a commercial linear programming solver, while another existing cycle-base formulation solves up to 20 times faster, with an average speed-up of factor 3 for the standard networks considered here. If generation capacities are also optimized, the average speed-up rises to a factor of 12, reaching up to factor 213 in a particular instance. The speed-up is largest for networks with many buses and decentral generators throughout the network, which is highly relevant given the rise of distributed renewable generation and the computational challenge of operation and planning in such networks. 000849931 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0 000849931 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x1 000849931 536__ $$0G:(Grant)PIK_082017$$aCoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017)$$cPIK_082017$$x2 000849931 588__ $$aDataset connected to CrossRef 000849931 7001_ $$0P:(DE-HGF)0$$aRonellenfitsch, Henrik$$b1 000849931 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b2$$ufzj 000849931 7001_ $$0P:(DE-HGF)0$$aBrown, Tom$$b3$$eCorresponding author 000849931 773__ $$0PERI:(DE-600)1502242-0$$a10.1016/j.epsr.2017.12.034$$gVol. 158, p. 126 - 135$$p126 - 135$$tElectric power systems research$$v158$$x0378-7796$$y2018 000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/1-s2.0-S0378779617305138-main.pdf$$yRestricted 000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/1-s2.0-S0378779617305138-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.pdf$$yOpenAccess 000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.gif?subformat=icon$$xicon$$yOpenAccess 000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000849931 8564_ $$uhttps://juser.fz-juelich.de/record/849931/files/Hoersch_1704.01881.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000849931 909CO $$ooai:juser.fz-juelich.de:849931$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000849931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b2$$kFZJ 000849931 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0 000849931 9141_ $$y2018 000849931 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000849931 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000849931 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000849931 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTR POW SYST RES : 2015 000849931 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000849931 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000849931 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000849931 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000849931 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000849931 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000849931 920__ $$lno 000849931 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0 000849931 980__ $$ajournal 000849931 980__ $$aVDB 000849931 980__ $$aI:(DE-Juel1)IEK-STE-20101013 000849931 980__ $$aUNRESTRICTED 000849931 9801_ $$aFullTexts