
ARTICLE

Dynamically induced cascading failures in power
grids
Benjamin Schäfer 1,2, Dirk Witthaut 3,4, Marc Timme1,2 & Vito Latora 5,6

Reliable functioning of infrastructure networks is essential for our modern society. Cascading

failures are the cause of most large-scale network outages. Although cascading failures often

exhibit dynamical transients, the modeling of cascades has so far mainly focused on the

analysis of sequences of steady states. In this article, we focus on electrical transmission

networks and introduce a framework that takes into account both the event-based nature of

cascades and the essentials of the network dynamics. We find that transients of the order of

seconds in the flows of a power grid play a crucial role in the emergence of collective

behaviors. We finally propose a forecasting method to identify critical lines and components

in advance or during operation. Overall, our work highlights the relevance of dynamically

induced failures on the synchronization dynamics of national power grids of different

European countries and provides methods to predict and model cascading failures.

DOI: 10.1038/s41467-018-04287-5 OPEN

1 Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, Technical University of Dresden, 01062
Dresden, Germany. 2 Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.
3 Forschungszentrum Jülich, Institute for Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE), 52428 Jülich, Germany.
4 Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany. 5 School of Mathematical Sciences, Queen Mary University of London,
London E1 4NS, UK. 6 Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, 95123 Catania, Italy. Correspondence and requests for materials
should be addressed to B.Säf. (email: benjamin.schaefer@tu-dresden.de) or to M.T. (email: marc.timme@tu-dresden.de)
or to V.L. (email: v.latora@qmul.ac.uk)

NATURE COMMUNICATIONS |  (2018) 9:1975 | DOI: 10.1038/s41467-018-04287-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0002-3623-5341
http://orcid.org/0000-0002-3623-5341
http://orcid.org/0000-0002-3623-5341
http://orcid.org/0000-0002-3623-5341
http://orcid.org/0000-0002-3623-5341
http://orcid.org/0000-0002-0984-8038
http://orcid.org/0000-0002-0984-8038
http://orcid.org/0000-0002-0984-8038
http://orcid.org/0000-0002-0984-8038
http://orcid.org/0000-0002-0984-8038
mailto:benjamin.schaefer@tu-dresden.de
mailto:marc.timme@tu-dresden.de
mailto:v.latora@qmul.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Our daily lives heavily depend on the functioning of many
natural and man-made networks, ranging from neuronal
and gene regulatory networks to communication systems,

transportation networks and electrical power grids1,2. Under-
standing the robustness of these networks with respect to random
failures and to targeted attacks is of outmost importance for
preventing system outages with severe implications3. Recent
examples, as the 2003 blackout in the Northeastern United
States4, the major European blackout in 20065 or the Indian
blackout in 20126, have shown that initially local and small events
can trigger large area outages of electric supply networks affecting
millions of people, with severe economic and political con-
sequences7. Cascading events will become more likely in the
future due to increasing load8 and additional fluctuations in the
grid9. For this reason cascading failures have been studied
intensively in statistical physics, and different network topologies
and non-local effects have been considered and analyzed10–18.
Complementary studies have employed simplified topologies that
admit analytical insights, for instance in terms of percolation
theory19 or minimum coupling20. Results have shown, for
instance, the robustness of scale-free networks3,21,22, or the vul-
nerability of multiplex networks23–26.

Although real-world cascades often include dynamical tran-
sients of grid frequency and flow with very well defined spatio-
temporal structures, so far models of cascading failures have
mainly focused on event-triggered sequences of steady states13–
16,27–30 or on purely dynamical descriptions of desynchronization
without considering secondary failure of lines31–35. In particular,
in supply networks such as electric power grids, which are con-
sidered as uniquely critical among all infrastructures36, the failure
of transmission lines during a blackout is determined not only by
the network topology and by the static distribution of the elec-
tricity flow, but also by the collective transient dynamics of the
entire system. Indeed, during the severe outages mentioned
above, cascading failures in electric power grids happened on
time scales of dozens of minutes overall, but often started due to
the failure of a single element37. Conversely, sequences of indi-
vidual line overloads took place on a much shorter time scale of
seconds4,5, the time scale of systemic instabilities, emphasizing
the role of transient dynamics in the emergence of collective
behaviors. For example, during the European blackout in 2006, a
total of 33 high-voltage transmission lines tripped within a time
period of 1 min and 20 s, with 30 of those lines failing within the
first 19 s5. Notwithstanding the importance of these fast tran-
sients, the causes, triggers and propagation of cascades induced by
transient dynamics have been considered only in a few works10,38,
and still need to be systematically studied39. Hence, we here focus
on characterizing the dynamics of events that take place at the
short time scale of seconds, which substantially contribute to the
overall outages occurring in real grids.

This work complements the existing studies on cascading
failures in power grids by linking nonlinear transient dynamics
on short time scales to cascade events and simultaneously cap-
turing line failures due to static overload. It is yet unrealistic to
capture all aspects and time scales within a single model that is
analytically tractable and provides mechanistic insights. Most of
the previous studies13–16,27–30,40, based on the analysis of
sequences of steady states, consider the effects of power plant
shutdown or line outages and did not take into account any
transient dynamical effects at all. In contrast, a dynamical model
might provide insights into cascading failures potentially induced
on short time scales, thereby characterizing the time scales rele-
vant to the majority of line failures.

In this article, we propose a general framework to analyze the
impact of transient dynamics (of the order of seconds) on the
outcome of cascading failures taking place over a complex

network. Specifically, we go beyond purely topological or event-
based investigations and present a dynamical model for electrical
transmission networks that incorporates both the event-based
nature of cascades and the properties of network dynamics,
including transients, which, as we will show, can significantly
increase the vulnerability of a network10. These transients
describe the dynamical response of system variables, such as grid
frequency and power flow, when one steady state is lost and the
grid changes to a new steady state. Combining microscopic
nonlinear dynamics techniques with a macroscopic statistical
analysis of the system, we will first show that, even when a net-
work seems to be robust because in the large majority of the cases
the initial failure of its lines does only have local effects, there
exist a few specific lines that can trigger large-scale cascades. We
will then analyze the vulnerability of a network by looking at the
dynamical properties of cascading failures. To identify the critical
lines of the network we introduce and analytically derive a flow-
based classifier that is shown to outperform measures solely
relying on the network topology, local loads or network sus-
ceptibilities (line outage distribution factors). Finally, we find that
the distance of a line failure from the initial trigger and the time
of the line failure are highly correlated, especially when a measure
of effective distance is adopted41.

Results
The dynamics of cascading failures. Failures are common in
many interconnected systems, such as communication, transport
and supply networks, which are fundamental ingredients of our
modern societies. Usually, the failure of a single unit, or of a part
of a network, is modeled by removing or deactivating a set of
nodes or lines (or links) in the corresponding graph42. The most
elementary damage to a network consists in the removal of a
single line, since removing a node is equivalent to deactivate more
than one line, namely all those lines incident in the node. For this
reason, in the following of this work, we concentrate on line
failures. In practice, the malfunctioning of a line in a transpor-
tation/communication network can either be due to an exogenous
or to an endogenous event43,44. In the first case, the line break-
down is caused by something external to the network. Examples
are the lightning strike of a transmission line of the electric power
grid, or the sagging of a line in the heat of the summer. In the case
of endogenous events, instead, a line can fail because of an
overload due to an anomalous distributions of the flows over the
network. Hence, the failure is an effect of the entire network.

Complex networks are also prone to cascading failures. In these
events, the failure of a component triggers the successive failures
of other parts of the network. In this way, an initial local shock
produces a sequence of multiple failures in a domino mechanism
which may finally affect a substantial part of the network.
Cascading failures occur in transportation systems45,46, in
computer networks47, in financial systems48, but also in supply
networks23. When, for some either exogenous or endogenous
reason, a line of a supply network fails, its load has to be
somehow redistributed to the neighboring lines. Although these
lines are in general capable of handling their extra traffic, in a few
unfortunate cases they will also go overload and will need to
redistribute their increased load to their neighbors. This
mechanism can lead to a cascade of failures, with a large number
of transmission lines affected and malfunctioning at the same
time. One particular critical supply network is the electrical power
grid displaying for example large-scale cascading failures during
the blackout on 14 August 2003, affecting millions of people in
North America, and the European blackout that occurred on 4
November 2006. In order to model cascading failures in power
transmission networks, we propose to use the framework of the
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swing equation, see Eq. (14) in Methods, to evaluate, at each time,
the actual power flow along the transmission lines of the network
and we compare it to the actual available capacity of the lines, see
Methods. Typical studies of network robustness and cascading
failures in power grids adopted quasi-static perspectives13–16,27–30

based on fixed-point estimates of the variables describing the
node states. Such an approach, in the context of the swing
equation, is equivalent to the evaluation of the voltage
phase angles {θi} as the fixed-point solution of Eq. (14) or a
power flow analysis36. In contrast, we use here the swing equation
to dynamically update the angles θi(t) as functions of time, and to
compute real-time estimates of the flow on each line. The flow on
the line (i, j), with coupling Kij at time t is obtained as:

Fij tð Þ ¼ Kij sin θj tð Þ � θi tð Þ
� �

: ð1Þ

Having the time evolution of the flow along the line (i, j), we
compare it to the capacity Cij of the line, i.e., to the maximum
flow that the line can tolerate. There are multiple options how
we can define the capacity of a line in the framework of the
swing equation. One possibility is the following. The dynamical
model of Eq. (14) itself would allow a maximum flow equal to
Fij= Kij on the line (i, j). However, in realistic settings, ohmic
losses would induce overheating of the lines which has to be
avoided. Hence, we assume that the capacity Cij is set to be a
tunable percentage of Kij. In order to prevent damage and keep
ground clearance49,50, the line (i, j) is then shutdown if the flow
on it exceeds the value αKij, where α ∈ [0, 1] is a control
parameter of the model. The overload condition on the line (i, j)
at time t finally reads:

overload : FijðtÞ
��� ���>Cij ¼ αKij: ð2Þ

Notice that the capacity Cij= αKij is an absolute capacity, i.e., it
is independent from the initial state of the system. This is
different from the definition of a capacity relative to the initial
flows, ~Cij := (1+ α)Fij(0), which has been commonly adopted in
the literature10,27,51.

Having defined the fixed point of the grid, given by the solution
of Eq. (16), and the capacity of each line, we explore the
robustness of the network with respect to line failures. We first
consider the ideal scenario in which all elements of the grid are
working properly, i.e., all generators are running as scheduled and
all lines are operational. We say that the grid is N− 0 stable52 if
the network has a stable fixed point and the flows on all lines are
within the bounds of the security limits, i.e., do not violate the
overload condition Eq. (2), where the flows are calculated by
inserting the fixed-point solution into Eq. (1).

Next, we assume the initial failure of a single transmission line.
We call the new network in which the corresponding line has
been removed the N− 1 grid. Since the affected transmission line
can be any of the Ej j lines of the network, we have Ej j different
N− 1 grids. If the N− 1 grid still has a fixed point for all possible
Ej j different initial failures, and all of these fixed points result in
flows within the capacity limits, the grid is said to be N− 1-
stable36,49,50. While traditional cascade approaches usually test
N− 0 or N− 1 stability using mainly static flows, our proposal is
to investigate cascades by means of dynamically updated flows
according to the power grid dynamics of Eq. (1). This allows for a
more realistic modeling of real-time overloads and line failures. In
practice, this means to solve the swing equation dynamically,
update flows and compare to the capacity rule Eq. (2), removing
lines whenever they exceed their capacity. Thereby, our
N− 1 stability criterion demands not only the stable states to
stay within the capacity limits but also includes the transient
flows on all lines. See Supplementary Note 1 for details on our
procedure, and Supplementary Note 6 for an investigation of the
case of lines tripping after a finite overload time.
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Fig. 1 Dynamical overload reveals additional line failures compared to static flow analysis. a A five node power network with two generators P+= 1.5 s−2

(green squares), three consumers P−=−1 s−2 (red circles), homogeneous coupling K≈ 1.63 s−2, and tolerance α= 0.6 is analyzed. To trigger a cascade,
we remove the line marked with a lightening bolt (2,4) at time t= 1 s. Other lines are color-coded as the flows in c and d. b We observe a cascading failure
with several additional line failures after the initial trigger due to the propagation of overloads. c The common quasi-static approach of analyzing fixed-point
flows would have predicted no additional line failures, since the new fixed point is stable with all flows below the capacity threshold. d Conversely, the
transient dynamics from the initial to the new fixed-point overloads additional lines which then fail as soon as their flows exceed their capacity (gray area)
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In order to illustrate how our dynamical model for cascading
failures works in practice, we first consider the case of the
network with N= 5 nodes and Ej j ¼ 7 lines shown in Fig. 1. We
assume that the network has two generators, the two nodes
reported as green squares, characterized by a positive power
P+= 1.5 s−2, and three consumers, reported as red circles, with
power P−=−1 s−2. For simplicity we have adopted here a
modified “per unit system” obtained by replacing real machine
parameters with dimensionless multiples with respect to reference
values. For instance, here a “per unit” mechanical power Pper unit
= 1 s−2 corresponds to the real value Preal= 100MW36,50.
Moreover, we assume homogeneous line parameters throughout
the grid, namely, we fix the coupling for each couple of nodes i
and j as Kij= Kaij, with K= 1.63 s−2 and unweighted adjacency
matrix aij. In order to prepare the system in its stable state, we
solve Eq. (16) and calculate the corresponding flows at
equilibrium. We then fix a threshold value of α= 0.6. With such
a value of the threshold, none of the flows is in the overload
condition of Eq. (2), and the grid is N− 0 stable. Next, we perturb
the stable steady state of the grid with an initial exogenous
perturbation. Namely, we assume that line (2, 4) fails at time t=
1, due to an external disturbance. By using again the static
approach of Eq. (16) to calculate the new steady state of the
system, it is found that all flows have changed but they still are all
below the limit of 0.6, as shown in Fig. 1c. Hence, with respect to
a static analysis, the grid is N− 1-stable to the failure of line (2,
4). Despite this, the capacity criterion in Eq. (2) can be violated
transiently, and secondary outages emerge dynamically. As Fig. 1d
shows, this is indeed what happens in the example considered.
Approximately one second after the initial failure, the line (4, 5) is
overloaded, which causes a secondary failure, leading to
additional overloads on other lines and their failure in a
cascading process that eventually leads to the disconnection of
the entire grid. The whole dynamics of the cascade of failures
induced by the initial removal of line (2, 4) is reported in Fig. 1d.
A dynamical update of the cascading algorithm is also shown in
Supplementary Movie 1.

Dynamical cascades are not limited to small networks as the
one considered in this example, but also appear in large networks.
In order to show this, we have implemented our model for
cascading failures on a network based on the real structure of the
Spanish high-voltage transmission grid. The network is reported
in Fig. 2 and has NSpanish= 98 nodes and Ej jSpanish = 175 edges.
We remark that, while we have complete knowledge of the

network topology, due to only partial information available on
line parameters and power distribution, we have to estimate those
missing parameters. Therefore, we have investigated several
different power distributions and coupling scenarios in our
simulations, including homogeneous versus heterogeneous cou-
pling, as well as considering cases with many small power plants,
compared to cases of fewer but larger plants. All parameter
choices we have adopted are further specified in Supplementary
Note 1 and the Data Availability Statement. We start by selecting
a set of distributed generators (green squares), each with a
positive power P+= 1 s−2, and consumers (red circles), with
negative power P−=−1 s−2. As in the case of the previous
example, we adopt a homogeneous coupling, namely we fix Kij=
Kaij with K= 5 s−2 for each couple of nodes i and j. We also fix a
tolerance value α= 0.52, such that none of the flows is in the
overload condition of Eq. (2), and the grid is initially N− 0 stable.
We notice from the effects of cascading failures shown in Fig. 2
that the choice of the trigger line significantly influences the total
number of lines damaged during a cascade. For instance, the
initial damage of line 1 (dashed red line in Fig. 2a) causes a large
cascade of failures with 14 lines damaged in the first seven
seconds, while the initial damage of line 2 (dashed blue line in Fig.
2a) does not cause any further line failure, as the initial shock is in
this case perfectly absorbed by the network. Figure 2 also displays
the average number of failing lines as a function of time. Here, we
average over all lines of the network considered as initially
damaged lines. We notice that the cascading process is relatively
fast, with all failures taking place within the first TCascade= 20 s.
This further supports the adoption of the swing equation, which
is indeed mainly used to describe short time scales, while more
complex and less tractable models are required to model longer
times50.

Statistics of dynamical cascades. To better characterize the
potential effects of cascading failures in electric power grids, we
have studied the statistical properties of cascades on the topology
of real-world power transmission grids, such as those of Spain
and France53. In particular, we have considered the two systems
under different values of the tolerance parameter α27, and for
various distributions of generators and consumers on the net-
work. As in the examples of the previous section, we have also
analyzed all possible initial damages triggering the cascade. To
assess the consequences of a cascade, we have focused on the
following two quantities. First, we analyze the number of lines
that suffered an overload, and are thus shutdown during the
cascading failure process. This number is a measure of the total
damage suffered by the system in terms of loss of its connectivity.
Second, we record the fraction of nodes that have experienced a
desynchronization during the cascade, which represents a proxy
for the number of consumers affected by a blackout, see Sup-
plementary Note 1 for details on the implementation. In both the
cases of affected lines and affected nodes, the numbers we look at
are those obtained at the end of the cascading failure process.

Figure 3 shows the results obtained for the case of the network
of the Spanish power transmission grid. The same homogeneous
coupling and distribution of generators and consumers is adopted
as in Fig. 2. We have considered each of the lines as a possible
initial trigger of the cascade, and averaged the final number of line
failures and unsynchronized nodes over all realizations of the
dynamical process. We have repeated this for multiple values of
the tolerance coefficient α. As expected, a larger tolerance results
in fewer line failures and fewer unsynchronized nodes, because it
makes the overload condition of Eq. (2) more difficult to be
satisfied. As we decrease the network tolerance α, the total
number of affected lines and unsynchronized nodes after the
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Fig. 2 The effect of a cascade of failures strongly depends on the choice of
the initially damaged line. a The network of the Spanish power grid with
distributed generators with P+= 1 s−2 (green squares) and consumers with
P−=−1 s−2 (red circles), homogeneous coupling K= 5 s−2, and tolerance
α= 0.52 is analyzed. Two different trigger lines are selected. b The number
of line failures as a function of time for the two different trigger lines
highlighted in a and for an average over all possible initial damages. Some
lines do only cause a single line failure, while others affect a substantial
amount of the network. On average most line failures do take place within
the first 20 seconds of the cascade
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cascade suddenly increases at a value α ≈ 0.5, where we start to
observe a propagation of the cascade induced by the initial
external damage. Crucially, a dynamical approach, as the one
considered in our model, identifies a significantly larger number
of line failures (circles) compared to a static approach (squares).
This is clearly visible in the inset of the left hand side of Fig. 3,
where we zoom to the lowest values of α at which the network is
N− 0 stable. For instance, at α= 0.52 our model predicts that an
average of six lines of the Spanish power grid are affected by the
initial damage of a line of the network through a propagation of
failures. Such a vulnerability of the network is completely
unnoticeable by a static approach to cascading failures based on
the analysis of fixed points. The static approach reveals in fact
that on average only one other line of the network will be affected.
We also note that the increase in the number of unsynchronized
nodes for decreasing values of α is much sharper than that for
overloaded lines. Below a value of α ≈ 0.5 the number of
unsynchronized nodes jumps to 100%. This transition indicates
a loss of the N− 0 stability of the system, meaning that, already in
the unperturbed state several lines are overloaded according to
the capacity criterion in Eq. (2) and thus fail. To study only
genuine effects of cascades, in the following we restrict ourselves
to the case α > 0.5, where the grid is N− 0 stable, but not
necessarily N− 1-stable. Furthermore, to assess the final impact
of a cascade on a network, we mainly focus on total number of
affected lines4,5. As discussed in the last section, damages to lines
are indeed the most elementary type of network damages.

Furthermore, we have explored the role of centralized versus
distributed power generation, and that of heterogeneous cou-
plings Kij, and also extended our analysis to other network
topologies of European national power grids, namely those of
France and of Great Britain, see Supplementary Note 2. In Fig. 4,
we compare the results obtained for the Spanish network
topology (three top panels) to those obtained for the French
network (three bottom panels). With NFrench= 146 nodes and
Ej jFrench = 223 edges the French power grid is larger in size than
the Spanish one considered in the previous figures (NSpanish= 98
and Ej jSpanish = 175) and has a smaller clustering coefficient. In
each case, we have calculated the total number of line failures at
the end of the cascading failure when any possible line of the
network is used as the initial trigger of the cascade. We then plot
the probability of having a certain number of line failures in the
process, so that the histogram reported indicates the size of the
largest cascades and how often they occur. Notice that the
probability axis uses a log-scale. For each network, we have

considered both distributed and centralized locations of power
generators, and both homogeneous and heterogeneous network
couplings. The centralized generation is thereby a good
approximation to the classical power grid design with few large
fossil and nuclear power plants powering the whole grid. In
contrast, the distributed generation scheme describes well the case
in which many small (wind, solar, biofuel, etc.) generators are
distributed across the grid31. Finally, the choice of heterogeneous
coupling is motivated by economic considerations, since main-
taining a transmission network costs money and only those lines
that actually carry flow are used in practice. In particular, we have
worked under the following three different types of settings.

First, we consider distributed power and homogeneous
coupling with an equal number of generators and consumers in
the network, each of them having respectively P+= 1 s−2 and P−

=−1 s−2. The network uses homogeneous coupling with Kij=
Kaij and K= 5 s−2 for the Spanish (as in case of the previous
figures) and K= 8 s−2 for the French grid. Results for this case
are shown in Fig. 4a and d. Next, we investigate centralized power
and homogeneous couplings with consumers with P−=−1 s−2

and fewer but larger generators with P+ ≈ 6 s−2. The network
uses homogeneous coupling with K= 10 s−2 for the Spanish and
K= 9 s−2 for the French grid. Results for this case are shown in
Fig. 4b and e. Finally, we apply distributed power and
heterogeneous coupling with homogeneous distribution of
generators and consumers as in case 1. The network uses a
heterogeneous distribution of the Kij, so that the fixed-point flows
on the lines are approximately F ≈ 0.5 K both for the Spanish and
the French grid, see Supplementary Note 1 for details. Results for
this case are shown in Fig. 4c and f.

We chose each of the above settings such that no line is
overloaded before the initial exogenous damage. We have
performed simulations for two values of the tolerance parameter
α. For each of the two grids and of the three conditions above, the
lowest value α= α1 has been selected to be equal to the minimal
tolerance such that each the network is N− 0 stable (yellow
histograms). In addition, we have considered a second, larger
value of the tolerance, α2, showing qualitatively different
behaviors (blue histograms). As found in other studies31–33,35,
the (homogeneous) coupling K has to be larger for centralized
generation compared to distributed small generators to achieve
comparable stability.

Initial line failures mostly do not cause any cascade and if they
do, cascades typically affect only a small number of lines, see
Fig. 4a. This means that the Spanish grid is in most of the cases N
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− 1-stable even in our dynamical model of cascades. Never-
theless, for α1, there exist a few lines that, when damaged, trigger
a substantial part of the network to be disconnected. This leads to
the question whether and how the distribution of generators or
the topology of the network impact the size and frequency of the
cascade. When comparing distributed (many small generators) in
Fig. 4a to centralized power generation (few large generators) in
Fig. 4b, we do not observe a significant difference in the statistics
of the cascades. The same holds when comparing different
network topologies, such as the Spanish and the French grid in
Fig. 4d and e.

Conversely, allowing heterogeneous couplings introduces
notable differences to emerge in Fig. 4c and f. To obtain
heterogeneous couplings, we have scaled Kij at each line
proportional to the flow at the stable operational state, see
Supplementary Note 1. Thereby, we try to emulate cost-efficient
grid planning which only includes lines when they are used.
However, our results show that, under these conditions, the flow
on a line with large coupling cannot easily be re-routed in our
heterogeneous network when it fails35. For certain initially
damaged lines, this leads to very large cascades in grids with
heterogeneous coupling Kij. For instance, both the Spanish and
the French power grid show a peak of probability corresponding
to cascades of about 150 line failures when α= α1. But also in the
case of α2= 0.8, which corresponds to a N− 1-stable situation
under the homogeneous coupling condition, the Spanish grid
exhibits cascades involving from 50 to 100 lines in 5% of the cases
under heterogeneous couplings, see Fig. 4c. The final number of
unsynchronized nodes after the cascade, used as a measure of the
network damage follows qualitatively a similar statistics. Namely,
distributed and centralized power generation return similar
statistical distributions of damage, while under heterogeneous
couplings the system behaves differently. Furthermore, for each
network, we have recorded the two extreme situations in which

either all nodes or the grid stay synchronized, or the whole grid
desynchronizes, see Supplementary Note 2.

What do the results obtained here imply about the robust
operation of power grids? We have shown that a network that is
initially stable (N− 0 stability), and remains stable even to the
initial damage of a line (N− 1 stability) according to the standard
static analysis of cascades, can display large-scale dynamical
cascades when properly modeled. Although these dynamical
overload events often have a very low probability, their
occurrence cannot be neglected since they may collapse the
entire power transmission network with catastrophic conse-
quences. In the examples studied, we have found that some
critical lines cause cascades resulting in a loss of up to 85% of the
edges (Fig. 4c). Hence, it is extremely important to develop
methods to identify such critical lines, which is the subject of the
next section.

Identifying critical lines. The statistical analysis presented in the
previous section revealed that the size of the cascades triggered by
different line failures is very heterogeneous. Most lines of the
networks investigated are not critical, i.e., they are either N− 1-
stable even in our dynamical model of cascades, or cause only a
very small number of secondary outages. However, for heavily
loaded grids, as reported in Fig. 4, some highly critical lines
emerge. Thereby, the initial failure of a single transmission line
causes a global cascade with the desynchronization of the
majority of nodes, leading to large blackouts. The key question
here is whether it is possible to devise a fast method to identify
the critical lines of a network. This might prove to be very useful
when it comes to improving the robustness of the network.

In this section, we introduce a flow-based indicator for the
onset of a cascade and demonstrate the effectiveness of its
predictions by comparing them to results of the numerical
simulation. In particular, we show that our indicator is capable of
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Fig. 4 Network damage distributions in the Spanish and French power grids considering different parameter settings. The histograms shown have been
obtained under three different settings. a, d The case of distributed power, i.e., equal number of generators and consumers, each with P+= 1 s−2 and P−=
−1 s−2, and homogeneous coupling with K= 5 s−2 for the Spanish and K= 8 s−2 for the French grid. b, e The case of centralized power, i.e., consumers
with P−=−1 s−2 and fewer but larger generators with P+≈ 6 s−2, and homogeneous coupling with K= 10 s−2 for Spanish and K= 9 s−2 for the French
grid. c, f A case of distributed power as in a and d, but with heterogeneous coupling, so that the fixed-point flows on the lines are F≈ 0.5 K both for the
Spanish and the French grid. For all plots we use two different tolerances α, where the lower one is the smallest simulated value of α so that there are no
initially overloaded lines (N− 0 stable)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04287-5

6 NATURE COMMUNICATIONS |  (2018) 9:1975 | DOI: 10.1038/s41467-018-04287-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


identifying the critical links of the network much better than
other measures purely based on the topology or steady state of the
network, such as the edge betweenness11,27,28.

In order to define a flow-based predictor for the onset of a
cascading failure, let us consider the typical time evolution of the
flow along a line after the initial removal of the first damaged line
(a, b). As illustrated in Fig. 5, we observe flow oscillations after
the initial line failure, which are well approximated by a damped
sinusoidal function of time. See also Supplementary Note 4 for
the time evolution of the flows for the case of the N= 5 node
graph introduced in Fig. 1. Now, the steady flows of the network
before and after the removal of the trigger line are obtained by
solving Eq. (16) for the fixed-point angles θ�i

� �
, which depend on

the node powers {Pi} and on the coupling matrix {Kij}. Thereby,
we obtain a set of nonlinear algebraic equations which have at
least one solution if the coupling Kij is larger than the critical
coupling33. For sufficiently large values of the coupling Kij there
can be multiple fixed points54. In each case, we determine a single
fixed point with small initial flows by using Newton’s method, see
Supplementary Note 1 for details. From the values of the fixed-
point angles {θ�} we calculate the equilibrium flow along each
line, for instance line (i, j), before and after the removal of the
trigger line, from the expression:

F�
ij ¼ Kij sin θ�j � θ�i

� �
: ð3Þ

Let us indicate the initial flow along line (i, j) in the intact
network as Fold

ij , and the new flow after the removal of the trigger
line as Fnew

ij , assuming there still is a fixed point. Given enough
time, the system settles in the new fixed point and the change of
flow on the line is ΔFij= Fnew

ij � Fold
ij . Based on the oscillatory

behavior observed in cascading events, see Fig. 5 for an
illustration, we approximate the time-dependent flow on the line
close to the new fixed point as:

Fij tð Þ � Fnew
ij � ΔFij cos νijt

� �
e�Dt; ð4Þ

where νij is the oscillation frequency specific to the link (i, j) and
D is a damping factor. The maximum flow Fmax

ij on the line

during the transient phase is then given by:

Fmax
ij � Fold

ij þ 2ΔFij: ð5Þ

Hence, for the cascade predictor we propose to test whether a
line will be overloaded during the transient by computing Fmax

ij
from the expression above and by checking whether Fmax

ij is larger
than the available capacity Cij of the link. This procedure provides
a good approximation of the real flows. However, it requires
fixed-point calculations of the intact network and of the network
after the initial trigger line is removed. Furthermore, it has to be
repeated for each possible initial trigger line, so that a total of
Ej j þ 1 fixed points is being computed, with Ej j being the number
of edges. A possible way to simplify this procedure is to compute
the fixed-point flows of the intact grid Fold

ij only, approximating
the fixed-point flows after changes of the network topology by the
Line Outage Distribution Factor (LODF)17,18. Details on this
method can be found in Supplementary Note 1.

After starting the cascade by removing line (a, b), we define our
analytical prediction for the minimal transient tolerance

αtr:ða;bÞij

� �
min

based on the maximum transient flow on line (i, j)

given in Eq. (5):

αtr:ða;bÞij

� �
min

¼ Fmax
ij

Kij
; ð6Þ

such that, if α> αtr:ða;bÞij

� �
min

, then cutting line (a, b) as a trigger

will not affect line (i, j). Finally, we define the minimal tolerance
(αtr.(a,b))min of the network as that value of α such that there is no
secondary failure after the initial failure of the trigger line, i.e., the
grid is N− 1 secure. We have:

αtr:ða;bÞ
� �

min
¼ max

ði;jÞ
αtr: ða;bÞij

� �
min

¼ max
ði;jÞ

Fmax
ij

Kij

 !
; ð7Þ

where the maximum is taken with respect to all links (i, j) in the
network and one trigger link (a, b). If we set α ≥ (αtr.(a,b))min then,
according to our prediction method, we expect no additional line
failures further to the initial damaged line. Let us assume that the
network topology is given, for instance that of a real national
power grid, and that the tolerance level is preset due to external
constrains like security regulations. Then, the calculation of
(αtr.(a,b))min allows to engineer a resilient grid by trying out
different realizations of Kij. When changes of Kij are small, the
new fixed-point flows are approximated by linear response of the
old flows17 giving us an easy way to design the power grid to
fulfill safety requirements.

To measure the quality of our predictor for critical lines and to
compare it to alternative predictors, we quantify its performance
by evaluating how often it detects critical lines as critical (true
positives) compared to how often it gives false alarms (false
positives). In our model for cascading failures, a potential trigger
line is classified as truly critical if its removal causes additional
secondary failures in the network according to the numerical
simulations of the dynamics35. The flow-based prediction is
obtained by first calculating the minimal tolerance of the network
(αtr.(a,b))min based on Eq. (7) and comparing it with the fixed
tolerance α of a given simulation. If the obtained minimal
tolerance is larger than the value of tolerance used in the
numerical simulation, than the line is classified as critical by our
predictor and additional overloads are to be expected. More
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Fig. 5 Introducing a flow-based estimator of the onset of a cascade. When
cutting an initial line, the flows on a typical edge (i, j) of the network
increase from Fold(red line) to Fnew (orange line). On the basis of numerical
observations, the transient flow F(t) from the old to the new fixed point are
well approximated as sinusoidal damped oscillation. Knowing the fixed-
point flows, allows to compute the difference ΔF= Fnew− Fold and estimate
the maximum transient flow as Fmax≈ Fold+ 2ΔF. This estimation is
typically slightly larger than the real flow because the latter is damped
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formally, we use the following prediction rules:

αtr: ða;bÞ
� �

min
� αþ σthr ) critical; ð8Þ

αtr: ða;bÞ
� �

min
<αþ σthr ) not critical; ð9Þ

with a variable threshold σthr∈ [−1, 1], which allows to tune the
sensitiviy of the predictor.

Analogously, we define a second predictor based on the
LODF17,18. In this case, the expected minimal tolerance is
obtained by approximating the new flow by the LODF, instead of
computing them by solving for the new fixed points, see
Supplementary Note 1.

We compare our predictors based on the flow dynamics to
the pure topological (or steady-state based) measures that
have been used in the classical analysis of cascades on
networks. The idea behind such measures is the following.
First, we consider the initial load on all potential trigger lines
(a, b): L(a,b)= |Fab(t= 0)|, i.e., the flow at time t= 0 on the
line, when the system is in its steady state. Intuitively, highly
loaded lines are expected to be more critical than less loaded
ones. Hence, comparing each load L(a,b) to the maximum load
on any line in the grid Lmax :¼ maxði;jÞL

ði;jÞ leads to the
following prediction:

Lða;bÞ � 1� σ thr
� �

Lmax ) critical; ð10Þ

Lða;bÞ< 1� σ thr
� �

Lmax ) not critical; ð11Þ

where σthr ∈ [0, 1] is the prediction threshold.
Another quantity that is often used as a measure of the

importance of a network edge is the edge betweenness1,2. The
betweenness b(a,b) of edge (a, b) is defined as the normalized
number of shortest paths passing by the edge. A predictor based
on the edge betweenness b(a,b) is then obtained by replacing L(a,b)

by b(a,b) in the expressions above.
To evaluate the predictive power of the flow-based cascade

predictors and to compare them to the standard topological
predictors, we have computed the number of lines that cause a
cascade by simulation and compared how often each predictor
correctly predicted the cascade, thereby deriving the rate of
correct cascade predictions (true positive rate) and rate of false
alarms (false positive rate). These two quantities are displayed

in a receiver operator characteristics (ROC) curve, which
reports the true positive rate versus the false positive rate when
varying the threshold σthr. The ROC curve would go up straight
from point (0, 0) to point (0, 1) in the ideal case in which the
predictor is capable of detecting all real cascade events, while
never giving a false positive. Conversely, random guessing
corresponds to the bisector. Finally, any realistic predictor
starts at the point (0, 0), i.e., never giving an alarm regardless of
the setting, and evolves to the point (1, 1), i.e. always giving an
alarm. The transition from (0, 0) to (1, 1) is tuned by
decreasing the threshold σthr determining when to give an
alarm.

The ROC curves corresponding to the predictors introduced
above are shown in Fig. 6a. A prediction based on the
betweenness of the line is only as good as a random guess. In
contrast, using the LODF and the initial load provide much better
predictions. Finally, the analytical prediction outperforms any
other method, well approximating an ideal predictor.

An alternative way to quantify the quality of a predictor is by
evaluating the area under curve (AUC), that is the size of the area
under the ROC curve. An ideal predictor would correspond to the
maximum possible value AUC= 1, while a random guess
produces an AUC of 0.5. So the closer the value of AUC for a
given predictor is to 1, the better are the obtained predictions.
AUC scores have been computed for different networks, settings
and parameters. The results for the dynamical flow-based
predictor, the predictor based on the LODF, as well as the initial
load and betweenness predictors, are shown in Fig. 6b. The values
of the AUC scores reported correspond to the different settings
described in Fig. 4, allowing a more systematic comparison of
predictors than that provided by a single ROC curve. Also from
this figure it is clear that a prediction of the critical links based on
their betweenness is on average only slightly better than random
guessing. Furthermore, this result rises concerns on the indis-
criminate use of the betweenness as a measure of centrality in
complex networks. Especially when the dynamical processes of
interest are well known, this must be taken into account in the
definition of dynamical centrality measures for complex net-
works11,55,56. The LODF and initial load predictors perform
relatively better on average, although they still display large
standard deviations. This means that, for certain networks and
settings they reach an AUC score close to the perfect value of 1,
while in some other cases they only reach values of AUC equal to
0.8. Of these two indicators, the initial load predictor results are
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Fig. 6 Comparing the predictions of the flow-based indicator of critical lines to other standard measures. Four different predictors are presented to
determine whether a given line, if chosen as initially damaged, causes at least one additional line failures. Our dynamical predictor (indicated as Transient)
is based on the estimated maximum transient flow (Eq. (5)). The predictor based on the LODF17,18 uses the same idea but computes the new fixed flows
based on a linearization of the flow computation. Predictors based on betweenness and initial load classify a line as critical if it is within the top σthr × 100%
of the edges with highest betweenness/load with threshold σthr∈ [0, 1]. a The ROC curves obtained for the Spanish grid with heterogeneous coupling and
tolerance α= 0.7, while in b the AUC is displayed for all network settings presented in Fig. 4. For each predictor all individual scores are displayed on the
left and the mean with error bars based on one standard deviation is shown on the right
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more reliable. Finally, our dynamical predictor, indicated in figure
as “Transient” outperforms all alternative ones, in every single
parameter and network realization. The figure indicates that the
corresponding AUC scores reach values very close to 1.
Moreover, this indicator displays the smallest standard deviation
when different networks and parameter settings are considered.
In conclusion, this seems to be the best indicator for the criticality
of a link. However, the results show that, although the initial load
predictor performs worse than our dynamical one, it might still
be used when computational resources are scarce as it provides
the second best predictions among those considered.

Cascade propagation. So far, we have shown that network cas-
cades, i.e., secondary failures following an initial trigger, can well
be caused by transient dynamical effects. We have proposed a
model for power grids that takes this into account, and we have
also developed a reliable method to predict whether additional
lines can be affected by an initial damage, potentially triggering a
cascade of failures. However, knowing whether a cascade develops
or not does not answer another important question that is to
understand how the cascade evolves throughout the network, and
which nodes and links are affected and when. Intuitively, we
expect that network components farther away from the initial
failure should be affected later by the cascade. We have indeed
observed that the time a line fails and its distance from the initial
triggering link are correlated. Instead of merely using the graph
topology to measure distances, we use a more sophisticated dis-
tance measure, the effective distance, based on the characteristic
flow from one node to its neighbors. This idea has been first
introduced in ref. 41 in the context of disease spreading, where the
effective distance has been shown to be capable of capturing
spreading phenomena better than the standard graph distance.
The effective distance between two vertices i and j can be defined
in our case as:

dij ¼ 1� log
KijPN
k¼1 Kik

 !
: ð12Þ

Here, we used the coupling matrix Kij as a measure of the flows
between nodes41. All pairs of nodes not sharing an edge, i.e., such

that Kij= 0, have infinite effective distance dij=∞. At each node
the cascade spreads to all neighbors but those that are coupled
tightly, get affected the most and hence get assigned the smallest
distance dij. Furthermore, the effective distance is an asymmetric
measure, since dij ≠ dji in general. The quantity dij is a property of
two nodes, while the most elementary damage in our cascade
model affects edges. Hence, the concept of distance has to be
extended from couples of nodes to couples of links. For instance,
in the case of an unweighted network, it is possible to define the
(standard) distance between two edges as the number of hops
along a shortest path connecting the two edges. In the case of a
weighted graph, we make use of the measure of effective distance
in Eq. (12) to define a distance between two edges as the minimal
path length of all weighted shortest paths between two edges. The
distance between two edges can then be obtained based on the
definition of distances between nodes {dij}. Given the trigger edge
(a, b), the distance from edge (a, b) to edge (i, j) is given by:

dða;bÞ!ði;jÞ ¼ dab þ min
v12 a;bf g;v22 i;jf g

dv1v2 ; ð13Þ

i.e., it is the minimum length of the shortest paths
a ! i; a ! j; b ! i and b ! j, plus the effective distance
between the two vertices a and b.

Figure 7 shows that the effective distance is capable of
capturing well the properties of the spatial propagation of the
cascade over the network from the location of the initial shock.
The figure refers to the case of the Spanish grid topology with
heterogeneous coupling (see Figs. 2 and 4). The temporal
evolution of one particular cascade event, which is started by
an initial exogenous damage of the edge marked as “Trigger”, is
reported. Network edges are color-coded based on the actual
arrival time of the cascade in Fig. 7a, and compared to a color
code based instead on their effective distance from the trigger line
in Fig. 7b. Edges far away from the trigger line, in terms of
effective distance, have brighter colors than edges close to the
trigger. Similarly, lines at which the cascade arrives later are
brighter than lines affected immediately. The figure clearly
indicates that effective distance and arrival time are highly
correlated, i.e., the cascade propagates throughout the network
reaching earlier those edges that are closer according to the
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Fig. 7Mapping the propagation of a cascade on the Spanish power grid. a The edges of the network are color-coded based on the normalized arrival time of
the cascade with respect to a specific initially damaged line, indicated as “Trigger” and b based on their normalized distance with respect to the trigger
using the effective distance measure in Eq. (12). In both cases, darker colors indicate shorter distance / earlier arrival of the cascade. Normalization is
carried out using the largest distance/arrival time. Edges that are not plotted are not reached by the cascade at all. The analysis has been performed using
the Spanish grid with distributed generators with P+= 1 (green squares), consumers with P−=−1 s−2 (red circles), heterogeneous coupling and tolerance
α= 0.55
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definition of effective distance. The relation between the effective
distance of a line from the initial trigger and the time it takes for
this line to be affected by the cascade is further investigated in the
scatter plot of Fig. 8. We observe a substantial correlation between
arrival time and shortest distance, indicating the possibility of an
effective speed of cascading failures across the network. Averaging
over all trigger lines, the correlation between cascade arrival time
and effective distance, R2

eff :

	 
 � 0:91, is larger than between the

arrival time and standard graph distance, R2
graph

D E
� 0:88. See

Supplementary Note 5 for details and ref. 57 for further discussion
on propagation of cascades.

Discussion
In this work, we have proposed and studied a model of electrical
transmission networks highlighting the importance of transient
dynamical behavior in the emergence and evolution of cascades
of failures. The model takes into account the intrinsic dynamical
nature of the system, in contrast to most other studies on supply
networks, which are instead based on a static flow analysis.
Differently from the existing works on cascading failures in
power grids10,13–16,27–30, we have exploited the dynamic nature
of the swing equation to describe the temporal behavior of the
system, and we have adopted an absolute flow threshold to
model the propagation of a cascade and to identify the critical
lines of a network. The differences with respects to the results of
a static flow analysis are striking, as N− 1 secure power grids,
i.e., grids for which the static analysis does not predict any
additional failures, can display large dynamical cascades. This
result emphasizes the importance of taking dynamical transients
of the order of seconds into account when analyzing cascades,
and should be considered by grid operators when performing a
power dispatch, or during grid extensions. Notably, our dyna-
mical model for cascades not only reveals additional failures, but
also allows to study the details of the spreading of the cascade
over the network. We have investigated such a propagation by
using an effective distance measure quantifying the distance of a
line (link of the network) from the original failure, which
strongly correlates with the time it takes for the cascade to reach
this line. The observed correlation between propagation time
and effective distance of a failure, points to the possibility of
extracting an effective speed of the cascade propagation. This
result may thus stimulate further research understanding pro-
pagation patterns on networks. Being able to measure the speed
of a cascade would further contribute to the design of measures
to stop or contain cascades in real-time because such

propagation speed determines how fast actions have to be taken.
We remark that an approximately constant speed in terms of,
e.g., the effective distance measure, may represent a highly non-
local spreading in terms of geographical distances, also observed
in40,57. Moreover, propagation patterns of line failures caused by
current overloads, as investigated here, may be qualitatively
different from those caused by voltage effects4,58. On longer
time scales the operation of control systems and emergency
measures such as load shedding must be taken into account to
assess the impact of a cascade of failures. These features are
typically studied in quasi-static models such that the short time
scale considered in this paper offers a complementary view to
the spreading of cascading failures.

While the swing equation is capable of capturing interesting
dynamical effects previously unnoticed, it still constitutes a
comparably simple model to describe power grids50. Alternative,
more elaborated models would involve more variables, e.g.,
voltages at each node of the network to allow a description of
longer time scales59–62. In addition, we only focused on the
removal of individual lines in our framework, instead of
including the shutdown of power plants, i.e., the removal of
network nodes. These simplifications are mainly justified by the
very same time scale of the dynamical phenomena. Most cas-
cades observed in the simulation are very fast, terminating on a
time scale of less than 10 s, which supports the choice of the
swing equation36,50. Furthermore, such short time scales are
consistent with empirical observations of real cascades in power
grids, which were caused in a very short time by overloaded
lines. Conversely, power plants (nodes of the network) were
usually shutdown after the failure of a large fraction of the
transmission grid. The same holds for load shedding, i.e., dis-
connecting consumers. Summing up, while the overall blackout
takes place over minutes, critical damage is done within seconds
due to line failures4,5,7. Hence, this article models the short time
scale of line failures only.

In order to further support our conclusions, we have con-
sidered additional models and discussed the validity of the
swing equation in Supplementary Note 3. In particular, we
have also simulated a third order model that includes voltage
dynamics, finding qualitatively similar results to those
obtained with the swing equation. Furthermore, a recent
study63 also highlights that a DC approach misses important
events, and an AC model is necessary to capture all aspects of
cascades. While the authors in63 use realistic (IEEE) grids and
more detailed simulation models, we complement this
numerical approach by providing semi-analytical insight into
cascades. Specifically, we provide simple predictors of critical
lines and observe a propagating cascade. Overall, our work
indicates that a dynamical second order model, as the one
adopted in our framework, is capable of capturing additional
features compared to static flow analyses, while still making
analytical approaches possible. This allows to go beyond the
methods commonly adopted in the engineering literature,
which are often solely based on heavy computer simulations of
specific scenarios, e.g. ref. 64.

Furthermore, concerning the delicate issue of protecting the
grid against random failures or targeted attacks, it is crucial to be
able to identify critical lines whose removal might be causing
large-scale outages. As we have seen, most of the lines of the
networks studied in this article cause very small cascades when
initially damaged. However, our results have also unveiled the
existence in each of these networks of a few critical lines pro-
ducing large outages, which in certain cases can even affect the
entire grid. Within our modeling framework, we have been able
to develop an analytical flow predictor that reliably identifies
critical lines and outperforms existing topological measures in
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Fig. 8 Effective distances between the initial trigger and secondary line
outages are plotted as a function of arrival time. Each point in the plot
represents one edge, while the straight line is the result of a linear fit. The
reported fit indicates that the two quantities are related by an approximate
linear relationship with regression coefficient R2≈ 0.94. Results refer to the
Spanish power grid with the same parameters and trigger as used in Fig. 7
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terms of prediction power. As an alternative to the analytical flow
predictor, when a faster assessment of criticality is required, the
stable state flows of the intact grid can be used, although they are
less reliable. We hope these two indicators can become a useful
tool for grid operators to test their current power dispatch stra-
tegies against cascading threads.

In a time when our lives depend more than ever on the proper
functioning of supply networks, we believe it is crucial to
understand their vulnerabilities and design them to be as robust
as possible. The results presented in this article represent only a
first step in this direction and many interesting questions remain
to be investigated and answered within our framework or similar
approaches. If cascades often propagate non-locally, can a
quantity like a propagation speed be defined or is it otherwise
possible to predict cascade arrival times in a unified way? Which
lines are affected by a large cascade, and which parts of the
network are capable of returning to a stable state? What are the
best mitigation strategies to contain a cascade or to stop its
propagation? All these questions go beyond the scope of this
article, whose main aim is to provide a first broad analysis of the
importance of transients in the emergence and evolution of cas-
cades. We hope the reported results will trigger the interest of the
research community of physicists, mathematicians and engineers.

Methods
Modeling power grids. When it comes to model the dynamics of a power
transmission network, the swing equation is a simple way to deal with the key
features of the system as a whole, namely its dynamical synchronization prop-
erties. Thereby, we avoid dealing directly with a complete dynamical description
in terms of complicated power grid simulation software or static power-flow
models which are routinely used to simulate specific scenarios on large-scale
power grids by power engineers. The swing equation retains the dynamical fea-
tures of AC power grids, by describing each of the elements of an electric power
network as a rotating machine characterized by its angle and its angular velocity
at a given time. In practice, a rotating machine either represents a large syn-
chronous generator in a conventional power plant or a coherent subgroup, i.e., a
group of strongly coupled small machines and loads which are tightly phase-
locked in all cases. Note that this is a coarse-grained model where every node is
modeled as a rotating machine with effective inertia. A node with higher demand
than supply will then act as an effective consumer, i.e., a synchronous motor. The
angle of each machine is assumed to be identical to the angle of the complex
voltage vector, so that the angle difference of two machines determines the power
flow between them to transport, for example, energy from a generator to a
consumer.

More formally, let us suppose to have N rotatory machines, each
corresponding to a node of a network. Each machine i, with i= 1, 2, …, N is
characterized by its mechanical rotor angle θi(t) and by its angular velocity ωi :=
dθi/dt relative to the reference frame of Ω= 2π(50 or 60) Hz. Furthermore,
machine i either feeds power into the network, acting as an effective generator
with power Pi > 0, or absorbs power, acting as an effective consumer
(corresponding to the aggregate consumers of an urban area) with power Pi < 0.
The swing equation reads34,50,65:

d
dt

θi ¼ ωi; ð14Þ

Ii
d
dt

ωi ¼ Pi � γiωi þ
XN
j¼1

Kij sin θj � θi

� �
; ð15Þ

where γi is the damping of an oscillator, Ii is the inertia constant and Kij is a
coupling matrix governing the topology of the power grid network, and the
strength of the interactions. In the following, we will both consider heterogeneous
coupling Kij or we will assume homogeneous coupling Kij= Kaij, where aij are the
entries of the unweighted adjacency matrix that describes the connectivity of the
network. For simplicity, we assume homogeneous damping γi= γ and inertia Ii
= 1 for all i ∈ 1, …, N. To derive Eq. (14) one has to assume that the voltage
amplitude Vi at each nodes is time-independent, that ohmic losses are negligible
and that the changes in the angular velocity are small compared to the reference
ωi � Ω, see e.g, refs. 36,65, for details. All these assumptions are fulfilled as long
as we model short time scales on the high-voltage transmission grid50 which will
be sufficient for our study. The coupling matrix Kij is an abbreviation for Kij=
BijViVj where Bij is the susceptance between two nodes36. The swing equation is
especially well suited to describe the power grid dynamics on short time scales, as
they appear in typical large-scale power grid cascades4,5,7, however, we also

discuss other models returning qualitatively similar results in Supplementary
Note 3.

The desired stable state of operation of the power grid network is characterized
by all machines running in synchrony at the reference angular velocity Ω, i.e., ωi=
0 ∀i∈ {1, …, N}, implying

P
i Pi ¼ 0. Thereby, we determine the fixed point by

solving for the angles θ�i in:

0 ¼ Pi þ
XN
j¼1

Kij sin θ�j � θ�i
� �

: ð16Þ

The grid in its synchronous state is phase-locked, i.e., all angle differences
do not change in time. This is important since the angle difference
determines the flow along a line, and fluctuating angle differences would
imply fluctuating conducted power which can in turn lead to the shutdown of
a plant36,50. Furthermore, transmission system operators demand the
frequency to stay within strict boundaries to ensure stability and constant
phase locking66.

Phase-locking and other synchronization phenomena arise in many different
domains and applications, and have attracted the interest of physicists across
fields67. One of the simplest synchronization models is the Kuramoto model which
has been used, among other applications, to describe synchronization phenomena
in fireflies, chemical reactions and simple neuronal models68–70. The swing
equation shows similarities with the Kuromoto model, including the sinusoidal
form of the coupling function and the existence of a minimal coupling threshold to
achieve synchronization33. However, the swing equation includes a second
derivative due to the inertial forces in the grid. Both equations share the same fixed
points but the swing equations display dissipative forces and limit cycles that are
not present in the Kuramoto model.

Data availability. The networks used in this study and examples of elementary
cascades are provided at https://osf.io/jz4m6/. All data that support the results
presented in the figures of this study are available from the authors upon request.

Received: 15 August 2017 Accepted: 11 April 2018

References
1. Newman, M. Networks: An Introduction (Oxford University Press, Inc., New

York, NY, 2010).
2. Latora, V., Nicosia, V. & Russo, G. Complex Networks: Principles, Methods and

Applications (Cambridge University Press, Cambridge, 2017).
3. Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex

networks. Nature 406, 378–382 (2000).
4. New York Independent System Operator. Interim Report on the August 14,

2003, Blackout (2004). https://www.hks.harvard.edu/hepg/Papers/NYISO.
blackout.report.8.Jan.04.pdf.

5. Union for the Co-ordination of Transmission of Electricity (UCTE). Final
Report: System Disturbance on 4 November 2006 (2007). https://www.entsoe.
eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-
20070130.pdf.

6. Central Electricty Regulatory Commision (CERC). Report on the Grid
Disturbances on 30th July and 31st July 2012. http://www.cercind.gov.in/2012/
orders/Final_Report_Grid_Disturbance.pdf.

7. Bialek, J. W. Why has it happened again? Comparison between the UCTE
blackout in 2006 and the blackouts of 2003. In Power Tech, 2007 IEEE
Lausanne 51–56 (IEEE, Lausanne, 2007).

8. Pesch, T., Allelein, H.-J. & Hake, J.-F. Impacts of the transformation of the
German energy system on the transmission grid. Eur. Phys. J. Spec. Top. 223,
2561 (2014).

9. Schäfer, B., Beck, C., Aihara, K., Witthaut, D. & Timme, M. Non-Gaussian
power grid frequency fluctuations characterized by Lévy-stable laws and
superstatistics. Nat. Energy 3, 119–126 (2018).

10. Simonsen, I., Buzna, L., Peters, K., Bornholdt, S. & Helbing, D. Transient
dynamics increasing network vulnerability to cascading failures. Phys. Rev.
Lett. 100, 218701 (2008).

11. Hines, P., Cotilla-Sanchez, E. & Blumsack, S. Do topological models provide
good information about electricity infrastructure vulnerability? Chaos 20,
033122 (2010).

12. Brummitt, C. D., Hines, P. D. H., Dobson, I., Moore, C. & D’Souza, R. M.
Transdisciplinary electric power grid science. Proc. Natl. Acad. Sci. USA 110,
12159 (2013).

13. Pahwa, S., Scoglio, C. & Scala, A. Abruptness of cascade failures in power
grids. Sci. Rep. 4, 3694 (2014).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04287-5 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1975 | DOI: 10.1038/s41467-018-04287-5 | www.nature.com/naturecommunications 11

https://osf.io/jz4m6/
https://www.hks.harvard.edu/hepg/Papers/NYISO.blackout.report.8.Jan.04.pdf
https://www.hks.harvard.edu/hepg/Papers/NYISO.blackout.report.8.Jan.04.pdf
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf
http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf
http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf
www.nature.com/naturecommunications
www.nature.com/naturecommunications


14. Witthaut, D. & Timme, M. Nonlocal effects and countermeasures in cascading
failures. Phys. Rev. E 92, 032809 (2015).

15. Plietzsch, A., Schultz, P., Heitzig, J. & Kurths, J. Local vs. global redundancy-
trade-offs between resilience against cascading failures and frequency stability.
Eur. Phys. J. Spec. Top. 225, 551–568 (2016).

16. Rohden, M., Jung, D., Tamrakar, S. & Kettemann, S. Cascading failures in AC
electricity grids. Phys. Rev. E 94, 032209 (2016).

17. Manik, D. et al. Network susceptibilities: theory and applications. Phys. Rev. E
95, 012319 (2017).

18. Ronellenfitsch, H., Manik, D., Horsch, J., Brown, T. & Witthaut, D. Dual
theory of transmission line outages. IEEE Trans. Power Syst. 32, 4060–4068
(2017).

19. Callaway, D. S., Newman, M. E., Strogatz, S. H. & Watts, D. J. Network
robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85,
5468 (2000).

20. Lozano, S., Buzna, L. & Daz-Guilera, A. Role of network topology in the
synchronization of power systems. Eur. Phys. J. B 85, 1–8 (2012).

21. Albert, R., Albert, I. & Nakarado, G. L. Structural vulnerability of the North
American power grid. Phys. Rev. E 69, 025103 (2004).

22. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U.
Complex networks: structure and dynamics. Phys. Rep. 424, 175–308
(2006).

23. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic
cascade of failures in interdependent networks. Nature 464, 1025–1028
(2010).

24. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys.
Rep. 544, 1 (2014).

25. Battiston, F., Nicosia, V. & Latora, V. Structural measures for multiplex
networks. Phys. Rev. E 89, 032804 (2014).

26. Scala, A., Lucentini, P. G. D. S., Caldarelli, G. & DÁgostino, G. Cascades in
interdependent flow networks. Physica D 323, 35–39 (2016).

27. Crucitti, P., Latora, V. & Marchiori, M. A topological analysis of the Italian
electric power grid. Physica A 338, 92–97 (2004).

28. Crucitti, P., Latora, V. & Marchiori, M. Model for cascading failures in
complex networks. Phys. Rev. E 69, 045104 (2004).

29. Kinney, R., Crucitti, P., Albert, R. & Latora, V. Modeling cascading
failures in the North American power grid. Eur. Phys. J. B 46, 101–107
(2005).

30. Ji, C. et al. Large-scale data analysis of power grid resilience across multiple US
service regions. Nat. Energy 1, 16052 (2016).

31. Rohden, M., Sorge, A., Timme, M. & Witthaut, D. Self-organized
synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101
(2012).

32. Rohden, M., Sorge, A., Witthaut, D. & Timme, M. Impact of network topology
on synchrony of oscillatory power grids. Chaos 24, 013123 (2014).

33. Manik, D. et al. Supply networks: Instabilities without overload. Eur. Phys. J.
Spec. Top. 223, 2527 (2014).

34. Nishikawa, T. & Motter, A. E. Comparative analysis of existing models for
power-grid synchronization. New. J. Phys. 17, 015012 (2015).

35. Witthaut, D., Rohden, M., Zhang, X., Hallerberg, S. & Timme, M. Critical
links and nonlocal rerouting in complex supply networks. Phys. Rev. Lett. 116,
138701 (2016).

36. Kundur, P., Balu, N. J. & Lauby, M. G. Power System Stability and Control
(McGraw-Hill, New York, 1994).

37. Pourbeik, P., Kundur, P. S. & Taylor, C. W. The anatomy of a power grid
blackout-root causes and dynamics of recent major blackouts. IEEE Power
Energy Mag. 4, 22–29 (2006).

38. Yang, Y. & Motter, A. E. Cascading failures as continuous phase-space
transitions. Phys. Rev. Lett. 119, 248302 (2017).

39. Bienstock, D. Optimal control of cascading power grid failures. In 2011 50th
IEEE Conference on Decision and Control and European Control Conference
(CDC-ECC) 2166–2173 (IEEE, Orlando, 2011).

40. Yang, Y., Nishikawa, T. & Motter, A. E. Small vulnerable sets determine large
network cascades in power grids. Science 358, eaan3184 (2017).

41. Brockmann, D. & Helbing, D. The hidden geometry of complex, network-
driven contagion phenomena. Science 342, 1337–1342 (2013).

42. Latora, V. & Marchiori, M. Vulnerability and protection of infrastructure
networks. Phys. Rev. E 71, 015103 (2005).

43. Argollo de Menezes, M. & Barabási, A.-L. Separating internal and external
dynamics of complex systems. Phys. Rev. Lett. 93, 068701 (2004).

44. Meloni, S., Gómez-Gardeñes, J., Latora, V. & Moreno, Y. Scaling breakdown
in flow fluctuations on complex networks. Phys. Rev. Lett. 100, 208701
(2008).

45. Çolak, S., Lima, A. & González, M. C. Understanding congested travel in
urban areas. Nat. Commun. 7, 10793 (2016).

46. Lima, A., Stanojevic, R., Papagiannaki, D., Rodriguez, P. & González, M. C.
Understanding individual routing behaviour. J. R. Soc. Interface 13, 20160021
(2016).

47. Echenique, P., Gómez-Gardeñes, J. & Moreno, Y. Dynamics of jamming
transitions in complex networks. Europhys. Lett. 71, 325 (2005).

48. Petrone, D. & Latora, V. A dynamic approach merging network theory and
credit risk techniques to assess systemic risk in financial networks. Sci. Rep. 8,
5561 (2018).

49. Wood, A. J., Wollenberg, B. F. & Sheblé, G. B. Power Generation, Operation
and Control (John Wiley & Sons, New York, 2013).

50. Machowski, J., Bialek, J. & Bumby, J. Power System Dynamics, Stability and
Control (John Wiley & Sons, New York, 2008).

51. Motter, A. E. & Lai, Y.-C. Cascade-based attacks on complex networks. Phys.
Rev. E 66, 065102 (2002).

52. Koç, Y., Warnier, M., Van Mieghem, P., Kooij, R. E. & Brazier, F. M. A
topological investigation of phase transitions of cascading failures in power
grids. Physica A 415, 273–284 (2014).

53. Rosato, V., Bologna, S. & Tiriticco, F. Topological properties of high-
voltage electrical transmission networks. Electr. Power Syst. Res. 77, 99–105
(2007).

54. Manik, D., Timme, M. & Witthaut, D. Cycle flows and multistability in
oscillatory networks. Chaos 27, 083123 (2017).

55. Klemm, K., Serrano, M. Á., Eguíluz, V. M. & Miguel, M. S. A measure of
individual role in collective dynamics. Sci. Rep. 2, 292 (2012).

56. Hines, P. & Blumsack, S. A centrality measure for electrical networks. In
Hawaii International Conference on System Sciences, Proc. of the 41st Annual,
185–185 (IEEE, Washington, 2008).

57. Hines, P. D., Dobson, I. & Rezaei, P. Cascading power outages propagate
locally in an influence graph that is not the actual grid topology. IEEE Trans.
Power Syst. 32, 958–967 (2017).

58. Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Voltage collapse in complex
power grids. Nat. Commun. 7, 10790 (2016).

59. Auer, S., Kleis, K., Schultz, P., Kurths, J. & Hellmann, F. The impact of model
detail on power grid resilience measures. Eur. Phys. J. Spec. Top. 225, 609–625
(2016).

60. Schmietendorf, K., Peinke, J., Friedrich, R. & Kamps, O. Self-organized
synchronization and voltage stability in networks of synchronous machines.
Eur. Phys. J. Spec. Top. 223, 2577–2592 (2014).

61. Sharafutdinov, K., Matthiae, M., Faulwasser, T. & Witthaut, D. Rotor-angle
versus voltage instability in the third-order model. Chaos 28, 033117
(2017).

62. Ma, J., Sun, Y., Yuan, X., Kurths, J. & Zhan, M. Dynamics and collapse in a
power system model with voltage variation: the damping effect. PLoS ONE 11,
e0165943 (2016).

63. Cetinay, H., Soltan, S., Kuipers, F. A., Zussman, G. & Van Mieghem, P.
Comparing the effects of failures in power grids under the AC and DC power
flow models. IEEE Trans. Netw. Sci. Eng. https://doi.org/10.1109/
TNSE.2017.2763746 (2017).

64. Salmeron, J., Wood, K. & Baldick, R. Analysis of electric grid security under
terrorist threat. IEEE Trans. Power Syst. 19, 905–912 (2004).

65. Filatrella, G., Nielsen, A. H. & Pedersen, N. F. Analysis of a power grid using a
Kuramoto-like model. Eur. Phys. J. B 61, 485 (2008).

66. European Network of Transmission System Operators for Electricity
(ENTSO-E). Statistical Factsheet 2014. https://www.entsoe.eu/publications/
major-publications/Pages/default.aspx. Accessed 1 Sept 2015.

67. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal
Concept in Nonlinear Sciences (Cambridge University Press, Cambridge,
2003).

68. Kuramoto, Y. in: International Symposium on on Mathematical Problems in
Theoretical Physics, Lecture Notes in Physics, Vol. 39 (ed. Araki, H.) 420
(Springer, New York, 1975).

69. Strogatz, S. H. From Kuramoto to Crawford: Exploring the onset of
synchronization in populations of coupled oscillators. Phys. D 143, 1
(2000).

70. Witthaut, D., Wimberger, S., Burioni, R. & Timme, M. Classical
synchronization indicates persistent entanglement in isolated quantum
systems. Nat. Commun. 8, 14829 (2017).

Acknowledgements
We thank Vittorio Rosato for providing the national grid topologies. B.S. and V. L.
acknowledge support from the EPSRC project EP/N013492/1, “Nash equilibria for load
balancing in networked power systems”. We gratefully acknowledge support from the
Federal Ministry of Education and Research (BMBF Grant No. 03SF0472A-F), the
Helmholtz Association (via the joint initiative “Energy System 2050—A Contribution of
the Research Field Energy” and the Grant No.VH-NG-1025 to D.W.), the Göttingen
Graduate School for Neurosciences and Molecular Biosciences (DFG Grant GSC 226/2 to
B.S.) and the Max Planck Society (to M.T.).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04287-5

12 NATURE COMMUNICATIONS |  (2018) 9:1975 | DOI: 10.1038/s41467-018-04287-5 | www.nature.com/naturecommunications

https://doi.org/10.1109/TNSE.2017.2763746
https://doi.org/10.1109/TNSE.2017.2763746
https://www.entsoe.eu/publications/major-publications/Pages/default.aspx
https://www.entsoe.eu/publications/major-publications/Pages/default.aspx
www.nature.com/naturecommunications


Author contributions
B.S. and V.L. designed the research. B.S. performed most simulations and generated
figures. B.S, V.L, D.W., and M.T. contributed to discussing intermediate and final results
and writing the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-04287-5.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04287-5 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1975 | DOI: 10.1038/s41467-018-04287-5 | www.nature.com/naturecommunications 13

https://doi.org/10.1038/s41467-018-04287-5
https://doi.org/10.1038/s41467-018-04287-5
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Dynamically induced cascading failures in power grids
	Results
	The dynamics of cascading failures
	Statistics of dynamical cascades
	Identifying critical lines
	Cascade propagation

	Discussion
	Methods
	Modeling power grids
	Data availability

	References
	Acknowledgements
	ACKNOWLEDGEMENTS
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




