000849944 001__ 849944
000849944 005__ 20210129234350.0
000849944 0247_ $$2doi$$a10.1186/s13287-018-0927-9
000849944 0247_ $$2Handle$$a2128/19270
000849944 0247_ $$2pmid$$apmid:29973246
000849944 0247_ $$2WOS$$aWOS:000437301100007
000849944 0247_ $$2altmetric$$aaltmetric:45035096
000849944 037__ $$aFZJ-2018-04039
000849944 082__ $$a570
000849944 1001_ $$0P:(DE-HGF)0$$aRogall, Rebecca$$b0
000849944 245__ $$aBioluminescence imaging visualizes osteopontin-induced neurogenesis and neuroblast migration in the mouse brain after stroke
000849944 260__ $$aLondon$$bBioMed Central$$c2018
000849944 3367_ $$2DRIVER$$aarticle
000849944 3367_ $$2DataCite$$aOutput Types/Journal article
000849944 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531127452_7373
000849944 3367_ $$2BibTeX$$aARTICLE
000849944 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849944 3367_ $$00$$2EndNote$$aJournal Article
000849944 520__ $$aBackgroundOsteopontin (OPN), an acidic phosphoglycoprotein, is upregulated in the brain after cerebral ischemia. We previously reported that OPN supports migration, survival, and proliferation of neural stem cells (NSC) in primary cell culture, as well as their differentiation into neurons. We here analyzed the effects of OPN on neuroblasts in vivo in the context of cerebral ischemia.MethodsTransgenic mice expressing luciferase under the control of the neuroblast-specific doublecortin (DCX)-promoter, allowing visualization of neuroblasts in vivo using bioluminescence imaging (BLI), were injected with OPN intracerebroventricularly while control mice were injected with vehicle buffer. To assess the effects of OPN after ischemia, additional mice were subjected to photothrombosis and injected with either OPN or vehicle.ResultsOPN enhanced the migration of neuroblasts both in the healthy brain and after ischemia, as quantified by BLI in vivo. Moreover, the number of neural progenitors was increased following OPN treatment, with the maximum effect on the second day after OPN injection into the healthy brain, and 14 days after OPN injection following ischemia. After ischemia, OPN quantitatively promoted the endogenous, ischemia-induced neuroblast expansion, and additionally recruited progenitors from the contralateral hemisphere.ConclusionsOur results strongly suggest that OPN constitutes a promising substance for the targeted activation of neurogenesis in ischemic stroke.
000849944 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000849944 588__ $$aDataset connected to DataCite
000849944 7001_ $$0P:(DE-HGF)0$$aRabenstein, Monika$$b1
000849944 7001_ $$0P:(DE-HGF)0$$aVay, Sabine$$b2
000849944 7001_ $$0P:(DE-HGF)0$$aBach, Annika$$b3
000849944 7001_ $$0P:(DE-HGF)0$$aPikhovych, Anton$$b4
000849944 7001_ $$0P:(DE-HGF)0$$aBaermann, Johannes$$b5
000849944 7001_ $$0P:(DE-HGF)0$$aHoehn, Mathias$$b6
000849944 7001_ $$0P:(DE-HGF)0$$aCouillard-Despres, Sébastien$$b7
000849944 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b8
000849944 7001_ $$0P:(DE-HGF)0$$aSchroeter, Michael$$b9
000849944 7001_ $$0P:(DE-HGF)0$$aRueger, Maria Adele$$b10$$eCorresponding author
000849944 773__ $$0PERI:(DE-600)2548671-8$$a10.1186/s13287-018-0927-9$$p183$$tStem cell research & therapy$$v9$$x1757-6512$$y2018
000849944 8564_ $$uhttps://juser.fz-juelich.de/record/849944/files/s13287-018-0927-9.pdf$$yOpenAccess
000849944 8564_ $$uhttps://juser.fz-juelich.de/record/849944/files/s13287-018-0927-9.gif?subformat=icon$$xicon$$yOpenAccess
000849944 8564_ $$uhttps://juser.fz-juelich.de/record/849944/files/s13287-018-0927-9.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000849944 8564_ $$uhttps://juser.fz-juelich.de/record/849944/files/s13287-018-0927-9.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000849944 8564_ $$uhttps://juser.fz-juelich.de/record/849944/files/s13287-018-0927-9.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000849944 909CO $$ooai:juser.fz-juelich.de:849944$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000849944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b8$$kFZJ
000849944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b9$$kFZJ
000849944 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b9
000849944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b10$$kFZJ
000849944 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000849944 9141_ $$y2018
000849944 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849944 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000849944 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000849944 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000849944 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTEM CELL RES THER : 2015
000849944 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000849944 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000849944 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849944 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849944 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000849944 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000849944 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000849944 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000849944 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849944 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849944 920__ $$lyes
000849944 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000849944 980__ $$ajournal
000849944 980__ $$aVDB
000849944 980__ $$aUNRESTRICTED
000849944 980__ $$aI:(DE-Juel1)INM-3-20090406
000849944 9801_ $$aFullTexts