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Introduction

The functionality of biomolecules, such as DNA, is strongly related not only to
the structural but also to the dynamical properties.

The activation of the fast struc-
tural fluctuations on the pico-
and the nanosecond windows
enables slower conformational
rearrangements and provides a
minimum degree of the flexibil-
ity to carry out the biological ac-
tivity [1].

The study of guanine-rich sequences at the end of human telomeres is strongly
increasing because of their potential therapeutic target for cancer [2].

This oligonucleotides can fold into
a four-stranded structure called G-
quadruplex and inhibit the activity of
telomerase, an enzyme which is ex-
pressed in an abnormal way in cancers
cells [3].

Goal: to single out the dynamics of the human oligonucleotide d [AG3(T2AG3)]
as a function of the hydration and of the temperature.

Elastic Incoherent Neutron Scattering experiment

Goal: study the atomic mean square displacements (MDS)
〈
u2
〉

of the human
sequence d [AG3(T2AG3)3] as a function of the temperature and of the hydration
(0h, 0.2h, 0.4h, 0.7h), [h = gwater/gDNA].

Where?The high-resolution, wide-momentum-transfer backscattering spec-
trometer IN13 (ILL, Grenoble, France) ,

Figure 1: Normalized incoherent elastic intensities versus Q2

of the oligonucleotides at h = 0.4 and at selected temperatures:
100, 200, 240, 260, 280, and 300 K . Lines: fits to the data.
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Q range Explored Explored
λav region

High–Q 2 − 4.48Å−1 ∼ 2Å intra-molecular

atomic motions

Low–Q 0.5 − 1.86Å−1 ∼ 5.5Å inter-nucleotides

motions

Figure 2: < u2 > vs T for oligonucleotides and for poligonu-
cleotides DNA at different hydration degree

Results:

ICH3 rotational dynamics
contribution

IDynamical transition

ITD shifts from 240 K to 180 K as
the water content increases.

I Low-Q:
〈
u2
〉
Oligo

>
〈
u2
〉
Poly

IThe intra-nucleotide motions in
DNA poly- and oligo-nucleotides
are not significantly affected by
conformational properties.

Quasi Elastic Incoherent Neutron Scattering experiment

Goal: study of the characteristic time of the internal motions for the oligonu-
cleotides sequence d [AG3(T2AG3)3] (0.5h) and polynucleotides DNA (0.5h) as
a function of the temperature.

Where? The backscattering spectrometer high-energy resolution SPHERES
(FRM II, Garching, Germany).

S(Q,E ) =

{
e<u>

2Q2

[A0(Q)δ(E ) + (1 − A0(Q))L(Q,E )]

}
⊗ R(Q,E )

Figure 3: a): S(Q, E) of oligonucleotides at 0.55h, at 250 K
(blue diamonds), 270 K (green squares), 285 K (purple triangles),
300 K (red circles).b): S(Q, E) di DNA at 0.55h, at250 K (blue
diamonds)) and 300 K (red circles).i) .
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1

π
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τ = ~
Γ is the characteristic time of

the relaxational motion sampled by
Hydrogen atoms.

Figure 4: Temperature dependence of the half-width at half-
maximum Γ obtained from fits of a single-Lorentzian function to
the Q-averaged QENS spectra

τ(ps) ∆E ( kJ
mol)

at 300K
DNA

Oligonucleotides 190 ± 7 4.0 ± 0.5
DNA

Polynucleotides 220 ± 5 6.0 ± 0.5

Results:

I ΓOligo−DNA > ΓPoly−DNA (τOligo−DNA < τPoly−DNA)

I∆EPoly−DNA > ∆EOligo−DNA

Conclusions

IHydration- and temperature-dependent dynamical activation

IDNA oligonucleotides exhibit a higher flexibility not only because they explore
a larger conformational space (larger

〈
u2
〉
Oligo−DNA

) but also because they do
it in shorter times.

IThe higher flexibility of d [AG3(T2AG3)3] oligonucleotides should not be as-
cribed to their specific tertiary structure.

IThe larger flexibility of oligonucleotides has to be ascribed to other intrinsic
properties, such as sequence composition or chain length.
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