000849981 001__ 849981
000849981 005__ 20240619091237.0
000849981 0247_ $$2doi$$a10.1021/acsami.8b02948
000849981 0247_ $$2ISSN$$a1944-8244
000849981 0247_ $$2ISSN$$a1944-8252
000849981 0247_ $$2pmid$$apmid:29763286
000849981 0247_ $$2WOS$$aWOS:000434895500010
000849981 037__ $$aFZJ-2018-04076
000849981 082__ $$a540
000849981 1001_ $$0P:(DE-Juel1)159584$$aMarkov, Aleksandr$$b0$$eCorresponding author
000849981 245__ $$aEngineering of Neuron Growth and Enhancing Cell-Chip Communication via Mixed SAMs
000849981 260__ $$aWashington, DC$$bSoc.$$c2018
000849981 3367_ $$2DRIVER$$aarticle
000849981 3367_ $$2DataCite$$aOutput Types/Journal article
000849981 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544431292_9817
000849981 3367_ $$2BibTeX$$aARTICLE
000849981 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000849981 3367_ $$00$$2EndNote$$aJournal Article
000849981 520__ $$aThe interface between cells and inorganic surfaces represents one of the key elements for bioelectronics experiments and applications ranging from cell cultures and bioelectronics devices to medial implants. In the present paper, we describe a way to tailor the biocompatibility of substrates in terms of cell growth and to significantly improve cell-chip communication, and we also demonstrate the reusability of the substrates for cell experiments. All these improvements are achieved by coating the substrates or chips with a self-assembled monolayer (SAM) consisting of a mixture of organic molecules, (3-aminopropyl)-triethoxysilane (APTES) and (3-glycidyloxypropyl)-trimethoxysilane (GLYMO). By varying the ratio of these molecules, we are able to tune the cell density and live/dead ratios of rat cortical neurons cultured directly on the mixed SAM as well as neurons cultured on protein-coated SAMs. Furthermore, the use of the SAM leads to a significant improvement in cell-chip communications. Action potential signals of up to 9.4± 0.6 mV (signal-to-noise ratio up to 47) are obtained for HL-1 cells on microelectrode arrays. Finally, we demonstrate that the SAMs facilitates a reusability of the samples for all cell experiments with little re-processing.
000849981 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000849981 588__ $$aDataset connected to CrossRef
000849981 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b1
000849981 7001_ $$0P:(DE-Juel1)165172$$aWolf, Nikolaus$$b2
000849981 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b3
000849981 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4
000849981 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, Roger$$b5
000849981 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.8b02948$$gVol. 10, no. 22, p. 18507 - 18514$$n22$$p18507 - 18514$$tACS applied materials & interfaces$$v10$$x1944-8252$$y2018
000849981 8564_ $$uhttps://juser.fz-juelich.de/record/849981/files/acsami.8b02948.pdf$$yRestricted
000849981 8564_ $$uhttps://juser.fz-juelich.de/record/849981/files/acsami.8b02948.pdf?subformat=pdfa$$xpdfa$$yRestricted
000849981 909CO $$ooai:juser.fz-juelich.de:849981$$pVDB
000849981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159584$$aForschungszentrum Jülich$$b0$$kFZJ
000849981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b1$$kFZJ
000849981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165172$$aForschungszentrum Jülich$$b2$$kFZJ
000849981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b3$$kFZJ
000849981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
000849981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich$$b5$$kFZJ
000849981 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000849981 9141_ $$y2018
000849981 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000849981 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000849981 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000849981 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000849981 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000849981 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000849981 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000849981 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000849981 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000849981 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000849981 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000849981 920__ $$lno
000849981 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000849981 980__ $$ajournal
000849981 980__ $$aVDB
000849981 980__ $$aI:(DE-Juel1)ICS-8-20110106
000849981 980__ $$aUNRESTRICTED
000849981 981__ $$aI:(DE-Juel1)IBI-3-20200312