TY - JOUR
AU - Markov, Aleksandr
AU - Maybeck, Vanessa
AU - Wolf, Nikolaus
AU - Mayer, Dirk
AU - Offenhäusser, Andreas
AU - Wördenweber, Roger
TI - Engineering of Neuron Growth and Enhancing Cell-Chip Communication via Mixed SAMs
JO - ACS applied materials & interfaces
VL - 10
IS - 22
SN - 1944-8252
CY - Washington, DC
PB - Soc.
M1 - FZJ-2018-04076
SP - 18507 - 18514
PY - 2018
AB - The interface between cells and inorganic surfaces represents one of the key elements for bioelectronics experiments and applications ranging from cell cultures and bioelectronics devices to medial implants. In the present paper, we describe a way to tailor the biocompatibility of substrates in terms of cell growth and to significantly improve cell-chip communication, and we also demonstrate the reusability of the substrates for cell experiments. All these improvements are achieved by coating the substrates or chips with a self-assembled monolayer (SAM) consisting of a mixture of organic molecules, (3-aminopropyl)-triethoxysilane (APTES) and (3-glycidyloxypropyl)-trimethoxysilane (GLYMO). By varying the ratio of these molecules, we are able to tune the cell density and live/dead ratios of rat cortical neurons cultured directly on the mixed SAM as well as neurons cultured on protein-coated SAMs. Furthermore, the use of the SAM leads to a significant improvement in cell-chip communications. Action potential signals of up to 9.4± 0.6 mV (signal-to-noise ratio up to 47) are obtained for HL-1 cells on microelectrode arrays. Finally, we demonstrate that the SAMs facilitates a reusability of the samples for all cell experiments with little re-processing.
LB - PUB:(DE-HGF)16
C6 - pmid:29763286
UR - <Go to ISI:>//WOS:000434895500010
DO - DOI:10.1021/acsami.8b02948
UR - https://juser.fz-juelich.de/record/849981
ER -