001     849981
005     20240619091237.0
024 7 _ |a 10.1021/acsami.8b02948
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a pmid:29763286
|2 pmid
024 7 _ |a WOS:000434895500010
|2 WOS
037 _ _ |a FZJ-2018-04076
082 _ _ |a 540
100 1 _ |a Markov, Aleksandr
|0 P:(DE-Juel1)159584
|b 0
|e Corresponding author
245 _ _ |a Engineering of Neuron Growth and Enhancing Cell-Chip Communication via Mixed SAMs
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544431292_9817
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interface between cells and inorganic surfaces represents one of the key elements for bioelectronics experiments and applications ranging from cell cultures and bioelectronics devices to medial implants. In the present paper, we describe a way to tailor the biocompatibility of substrates in terms of cell growth and to significantly improve cell-chip communication, and we also demonstrate the reusability of the substrates for cell experiments. All these improvements are achieved by coating the substrates or chips with a self-assembled monolayer (SAM) consisting of a mixture of organic molecules, (3-aminopropyl)-triethoxysilane (APTES) and (3-glycidyloxypropyl)-trimethoxysilane (GLYMO). By varying the ratio of these molecules, we are able to tune the cell density and live/dead ratios of rat cortical neurons cultured directly on the mixed SAM as well as neurons cultured on protein-coated SAMs. Furthermore, the use of the SAM leads to a significant improvement in cell-chip communications. Action potential signals of up to 9.4± 0.6 mV (signal-to-noise ratio up to 47) are obtained for HL-1 cells on microelectrode arrays. Finally, we demonstrate that the SAMs facilitates a reusability of the samples for all cell experiments with little re-processing.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 1
700 1 _ |a Wolf, Nikolaus
|0 P:(DE-Juel1)165172
|b 2
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 3
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 4
700 1 _ |a Wördenweber, Roger
|0 P:(DE-Juel1)128749
|b 5
773 _ _ |a 10.1021/acsami.8b02948
|g Vol. 10, no. 22, p. 18507 - 18514
|0 PERI:(DE-600)2467494-1
|n 22
|p 18507 - 18514
|t ACS applied materials & interfaces
|v 10
|y 2018
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/849981/files/acsami.8b02948.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/849981/files/acsami.8b02948.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:849981
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159584
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165172
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128749
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2015
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21