000850004 001__ 850004
000850004 005__ 20240711085605.0
000850004 0247_ $$2Handle$$a2128/19718
000850004 037__ $$aFZJ-2018-04092
000850004 041__ $$aEnglish
000850004 1001_ $$0P:(DE-Juel1)171659$$aFrey, Carolin$$b0
000850004 1112_ $$a13th EUROPEAN SOFC & SOE FORUM$$cLucerne$$d2018-07-04 - 2018-07-06$$gEFCF$$wSwitzerland
000850004 245__ $$aCopper-containing fuel electrodes for solid oxide electrolysis cells
000850004 260__ $$c2018
000850004 300__ $$a68-74
000850004 3367_ $$2ORCID$$aCONFERENCE_PAPER
000850004 3367_ $$033$$2EndNote$$aConference Paper
000850004 3367_ $$2BibTeX$$aINPROCEEDINGS
000850004 3367_ $$2DRIVER$$aconferenceObject
000850004 3367_ $$2DataCite$$aOutput Types/Conference Paper
000850004 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1537446603_4942
000850004 520__ $$aIn fuel electrodes for solid oxide electrolysis cells (SOECs) several degradation phenomena can be found after operation for prolonged duration. The agglomeration, especially the depletion of nickel in the active electrode, is the most pronounced degradation within steam electrolysis. Operating SOECs in co-electrolysis mode, coke formation in the fuel gas electrode can lead to further degradation. For nickel catalysts in methanol synthesis copper nickel alloys are known to inhibit coke formation. Therefore copper nickel alloys are interesting candidates for catalysts in SOEC fuel electrode functional layer as they might be beneficial for the suppression of nickel depletion as well.There are many possible manufacturing routes for copper nickel alloy catalysts in solid oxide fuel or electrolysis cells. Most frequently used is the impregnation route. Disadvantages of this approach are time expanse and multiple infiltration and heating steps. In this talk alternative manufacturing routes will be pointed out. Analytical characterization will be shown.
000850004 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000850004 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000850004 7001_ $$0P:(DE-Juel1)165868$$aGrünwald, Nikolas$$b1$$eCorresponding author
000850004 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b2
000850004 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3
000850004 773__ $$pB0909$$vChap. 10
000850004 8564_ $$uhttps://juser.fz-juelich.de/record/850004/files/Gr%C3%BCnwald_13th-EFCF_Lucerne_journal%20article.pdf$$yOpenAccess
000850004 909CO $$ooai:juser.fz-juelich.de:850004$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000850004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171659$$aForschungszentrum Jülich$$b0$$kFZJ
000850004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165868$$aForschungszentrum Jülich$$b1$$kFZJ
000850004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b2$$kFZJ
000850004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000850004 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000850004 9141_ $$y2018
000850004 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850004 920__ $$lyes
000850004 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850004 9801_ $$aFullTexts
000850004 980__ $$acontrib
000850004 980__ $$aVDB
000850004 980__ $$aUNRESTRICTED
000850004 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850004 981__ $$aI:(DE-Juel1)IMD-2-20101013