000850007 001__ 850007
000850007 005__ 20240708132830.0
000850007 037__ $$aFZJ-2018-04095
000850007 041__ $$aEnglish
000850007 1001_ $$0P:(DE-Juel1)171659$$aFrey, Carolin$$b0$$ufzj
000850007 1112_ $$a13th EUROPEAN SOFC & SOE FORUM$$cLucerne$$d2018-07-04 - 2018-07-06$$wSwitzerland
000850007 245__ $$aCopper-containing fuel electrodes for solid oxide electrolysis cells
000850007 260__ $$c2018
000850007 3367_ $$033$$2EndNote$$aConference Paper
000850007 3367_ $$2BibTeX$$aINPROCEEDINGS
000850007 3367_ $$2DRIVER$$aconferenceObject
000850007 3367_ $$2ORCID$$aCONFERENCE_POSTER
000850007 3367_ $$2DataCite$$aOutput Types/Conference Poster
000850007 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1538986964_22199$$xAfter Call
000850007 520__ $$aIn fuel electrodes for solid oxide electrolysis cells (SOECs) several degradation phenomena can be found after operation for prolonged duration. The agglomeration, especially the depletion of nickel in the active electrode, is the most pronounced degradation within steam electrolysis. Operating SOECs in co-electrolysis mode, coke formation in the fuel gas electrode can lead to further degradation. For nickel catalysts in methanol synthesis copper nickel alloys are known to inhibit coke formation. Therefore copper nickel alloys are interesting candidates for catalysts in SOEC fuel electrode functional layer as they might be beneficial for the suppression of nickel depletion as well. There are many possible manufacturing routes for copper nickel alloy catalysts in solid oxide fuel or electrolysis cells. Most frequently used is the impregnation route. Disadvantages of this approach are time expanse and multiple infiltration and heating steps. In this talk alternative manufacturing routes will be pointed out. Analytical characterization will be shown.
000850007 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000850007 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000850007 7001_ $$0P:(DE-Juel1)165868$$aGrünwald, Nikolas$$b1$$eCorresponding author$$ufzj
000850007 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b2$$ufzj
000850007 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj
000850007 909CO $$ooai:juser.fz-juelich.de:850007$$pVDB
000850007 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171659$$aForschungszentrum Jülich$$b0$$kFZJ
000850007 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165868$$aForschungszentrum Jülich$$b1$$kFZJ
000850007 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b2$$kFZJ
000850007 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000850007 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000850007 9141_ $$y2018
000850007 920__ $$lyes
000850007 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850007 980__ $$aposter
000850007 980__ $$aVDB
000850007 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850007 980__ $$aUNRESTRICTED
000850007 981__ $$aI:(DE-Juel1)IMD-2-20101013