001     850007
005     20240708132830.0
037 _ _ |a FZJ-2018-04095
041 _ _ |a English
100 1 _ |a Frey, Carolin
|0 P:(DE-Juel1)171659
|b 0
|u fzj
111 2 _ |a 13th EUROPEAN SOFC & SOE FORUM
|c Lucerne
|d 2018-07-04 - 2018-07-06
|w Switzerland
245 _ _ |a Copper-containing fuel electrodes for solid oxide electrolysis cells
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1538986964_22199
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a In fuel electrodes for solid oxide electrolysis cells (SOECs) several degradation phenomena can be found after operation for prolonged duration. The agglomeration, especially the depletion of nickel in the active electrode, is the most pronounced degradation within steam electrolysis. Operating SOECs in co-electrolysis mode, coke formation in the fuel gas electrode can lead to further degradation. For nickel catalysts in methanol synthesis copper nickel alloys are known to inhibit coke formation. Therefore copper nickel alloys are interesting candidates for catalysts in SOEC fuel electrode functional layer as they might be beneficial for the suppression of nickel depletion as well. There are many possible manufacturing routes for copper nickel alloy catalysts in solid oxide fuel or electrolysis cells. Most frequently used is the impregnation route. Disadvantages of this approach are time expanse and multiple infiltration and heating steps. In this talk alternative manufacturing routes will be pointed out. Analytical characterization will be shown.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
700 1 _ |a Grünwald, Nikolas
|0 P:(DE-Juel1)165868
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 2
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 3
|u fzj
909 C O |o oai:juser.fz-juelich.de:850007
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171659
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165868
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21