001     850022
005     20230426083159.0
024 7 _ |a 10.1103/PhysRevB.98.024502
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/19289
|2 Handle
024 7 _ |a WOS:000437668600006
|2 WOS
024 7 _ |a altmetric:34740239
|2 altmetric
037 _ _ |a FZJ-2018-04108
082 _ _ |a 530
100 1 _ |a Riwar, Roman
|0 P:(DE-Juel1)168366
|b 0
|u fzj
245 _ _ |a Dissipation by normal-metal traps in transmon qubits
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531292689_7360
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quasiparticles are an intrinsic source of relaxation and decoherence for superconducting qubits. Recent works have shown that normal-metal traps may be used to evacuate quasiparticles, and potentially improve the qubit lifetime. Here, we investigate how far the normal metals themselves may introduce qubit relaxation. We identify the Ohmic losses inside the normal metal and the tunneling current through the normal-metal–superconductor interface as the relevant relaxation mechanisms. We show that the Ohmic loss contribution depends strongly on the device and trap geometry, as a result of the inhomogeneous electric fields in the qubit. The correction of the quality factor due to the tunneling current on the other hand is highly sensitive to the nonequilibrium distribution function of the quasiparticles. Overall, we show that even when choosing less than optimal parameters, the presence of normal-metal traps does not affect the quality factor of state-of-the-art qubits.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
542 _ _ |i 2018-07-05
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
542 _ _ |i 2019-07-05
|2 Crossref
|u https://link.aps.org/licenses/aps-default-accepted-manuscript-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Glazman, L. I.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Catelani, G.
|0 P:(DE-Juel1)151130
|b 2
|e Corresponding author
|u fzj
773 1 8 |a 10.1103/physrevb.98.024502
|b American Physical Society (APS)
|d 2018-07-05
|n 2
|p 024502
|3 journal-article
|2 Crossref
|t Physical Review B
|v 98
|y 2018
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.98.024502
|g Vol. 98, no. 2, p. 024502
|0 PERI:(DE-600)2844160-6
|n 2
|p 024502
|t Physical review / B
|v 98
|y 2018
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/850022/files/PhysRevB.98.024502.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/850022/files/PhysRevB.98.024502.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/850022/files/PhysRevB.98.024502.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/850022/files/PhysRevB.98.024502.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/850022/files/PhysRevB.98.024502.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:850022
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168366
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151130
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts
999 C 5 |a 10.1007/s11128-004-3101-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.76.042319
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1175552
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.014517
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.077002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.144503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.024503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.103.097002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.240501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms2936
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.064517
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.066802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.230509
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.122493
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.117002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms6836
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms10977
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.100501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.214521
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.020505
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.94.104516
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.220501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevApplied.8.064028
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.aah5844
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.97.054513
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.73.357
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.167004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-2048/29/4/044001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/10/8/007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/15/10/320
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. D. Jackson
|y 1999
|2 Crossref
|t Classical Electrodynamics
|o J. D. Jackson Classical Electrodynamics 1999
999 C 5 |a 10.1103/PhysRevB.6.1747
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21