000850035 001__ 850035 000850035 005__ 20240708132830.0 000850035 037__ $$aFZJ-2018-04121 000850035 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author$$ufzj 000850035 1112_ $$aInternational Conference on Ceramics$$cFoz do Iguaçu$$d2018-06-17 - 2018-06-21$$gICC 7$$wBrasilien 000850035 245__ $$aCeramic batteries for electrochemical energy storage 000850035 260__ $$c2018 000850035 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1536571136_28524 000850035 3367_ $$033$$2EndNote$$aConference Paper 000850035 3367_ $$2BibTeX$$aINPROCEEDINGS 000850035 3367_ $$2DRIVER$$aconferenceObject 000850035 3367_ $$2DataCite$$aOutput Types/Conference Abstract 000850035 3367_ $$2ORCID$$aOTHER 000850035 520__ $$aRechargeable high-performance batteries are essential for portable electronic devices and gain increasing importance in a transition scenario from fossil fuel based energy to zero emission technology, including electric cars and energy harvesting from volatile energy sources like solar and wind power. Among the various possibilities envisaged, solid-state batteries are currently seen as a highly promising solution to overcome the current limitations of conventional battery technologies such as the lack of long-term stability, limited safety, and low storage capacity. In solid-state batteries, the liquid electrolyte is completely replaced by a ceramic ion conductor, so that no highly flammable compound is present any more.This publication gives an overview of the different classes of solid lithium ion conductors, their properties, advantages and disadvantages as electrolytes, and the challenges associated with the processing of ceramic materials to full battery cells and their proper operation: While appropriate contact between electrodes and electrolyte can be easily achieved in battery cells with liquid electrolytes, a suitable contact with low charge transfer resistance in general requires a thermally or electric field activated deposition method for solids. Particularly, solid ion conductors tend to react with air and moisture, and with electrode materials during processing. Moreover – opposite to earlier assumptions in literature – lithium metal deposition inside of solid electrolytes may occur under certain operating conditions, thus leading to short circuits inside of the electrolyte. Sophisticated analysis methods like Secondary Ion Mass Spectrometry (SIMS) and further spectroscopic and diffraction techniques were introduced to gain significant insight into these effects. Finally, examples of fully functional solid-state batteries and their electrochemical performance will be presented. 000850035 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000850035 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b1$$ufzj 000850035 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b2$$ufzj 000850035 7001_ $$0P:(DE-Juel1)165951$$aWindmüller, Anna$$b3$$ufzj 000850035 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b4$$ufzj 000850035 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b5$$ufzj 000850035 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b6$$ufzj 000850035 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b7$$ufzj 000850035 909CO $$ooai:juser.fz-juelich.de:850035$$pVDB 000850035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b0$$kFZJ 000850035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich$$b1$$kFZJ 000850035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b2$$kFZJ 000850035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165951$$aForschungszentrum Jülich$$b3$$kFZJ 000850035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich$$b4$$kFZJ 000850035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b5$$kFZJ 000850035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b6$$kFZJ 000850035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b7$$kFZJ 000850035 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000850035 9141_ $$y2018 000850035 920__ $$lyes 000850035 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000850035 980__ $$aabstract 000850035 980__ $$aVDB 000850035 980__ $$aI:(DE-Juel1)IEK-1-20101013 000850035 980__ $$aUNRESTRICTED 000850035 981__ $$aI:(DE-Juel1)IMD-2-20101013