000850056 001__ 850056
000850056 005__ 20240711101429.0
000850056 0247_ $$2doi$$a10.1021/acscatal.8b04883
000850056 0247_ $$2WOS$$aWOS:000467335600001
000850056 037__ $$aFZJ-2018-04138
000850056 082__ $$a540
000850056 1001_ $$0P:(DE-Juel1)129851$$aGlüsen, Andreas$$b0$$eCorresponding author
000850056 245__ $$aDealloyed PtNi-Core-Shell Nanocatalysts Enable Significant Lowering of Pt Electrode Content in Direct Methanol Fuel Cells
000850056 260__ $$aWashington, DC$$bACS$$c2019
000850056 3367_ $$2DRIVER$$aarticle
000850056 3367_ $$2DataCite$$aOutput Types/Journal article
000850056 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568010187_22202
000850056 3367_ $$2BibTeX$$aARTICLE
000850056 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850056 3367_ $$00$$2EndNote$$aJournal Article
000850056 520__ $$aDirect methanol fuel cells (DMFCs) have the major advantage of the high energy density of the methanol (4.33 kWh/l) they use as a liquid fuel, although their costs remain too high due to the high quantity of Pt needed as a catalyst for oxygen reduction in the presence of methanol. Pt–Ni core–shell catalysts are promising candidates for improved oxygen reduction kinetics as shown in hydrogen fuel cells. The novelty in this work is due to the fact that we studied these catalysts in DMFC cathodes where oxygen must be reduced and membrane-permeating methanol oxidized at the same time. In spite of many attempts to overcome these problems, high amounts of Pt are still required for DMFC cathodes. During measurements over more than 3000 operating hours, the performance of the core–shell catalysts increased so substantially that a similar performance to that obtained with five times the amount of commercial platinum catalyst was achieved. While catalyst degradation has been thoroughly studied before, we showed here that these catalysts exhibit a self-protection mechanism in the DMFC cathode environment and prolonged operation is actually beneficial for performance and further stability due to the formation of a distinct Pt-rich shell on a PtNi core. The catalyst was analyzed by transition electron microscopy to show how the catalyst structure had changed during activation of the core–shell catalyst.
000850056 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000850056 588__ $$aDataset connected to CrossRef
000850056 7001_ $$0P:(DE-HGF)0$$aDionigi, Fabio$$b1
000850056 7001_ $$0P:(DE-Juel1)151296$$aPaciok, Paul$$b2
000850056 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b3
000850056 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b4
000850056 7001_ $$0P:(DE-HGF)0$$aGan, Lin$$b5
000850056 7001_ $$0P:(DE-HGF)0$$aStrasser, Peter$$b6
000850056 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7
000850056 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b8
000850056 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.8b04883$$gVol. 9, no. 5, p. 3764 - 3772$$n5$$p3764 - 3772$$tACS catalysis$$v9$$x2155-5435$$y2019
000850056 8564_ $$uhttps://juser.fz-juelich.de/record/850056/files/acscatal.8b04883.pdf$$yRestricted
000850056 8564_ $$uhttps://juser.fz-juelich.de/record/850056/files/acscatal.8b04883.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850056 909CO $$ooai:juser.fz-juelich.de:850056$$pVDB
000850056 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b0$$kFZJ
000850056 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151296$$aForschungszentrum Jülich$$b2$$kFZJ
000850056 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b3$$kFZJ
000850056 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b4$$kFZJ
000850056 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000850056 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b8$$kFZJ
000850056 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b8$$kRWTH
000850056 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000850056 9141_ $$y2019
000850056 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2015
000850056 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850056 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850056 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850056 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850056 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850056 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850056 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850056 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS CATAL : 2015
000850056 920__ $$lyes
000850056 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000850056 980__ $$ajournal
000850056 980__ $$aVDB
000850056 980__ $$aI:(DE-Juel1)IEK-3-20101013
000850056 980__ $$aUNRESTRICTED
000850056 981__ $$aI:(DE-Juel1)ICE-2-20101013