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Several brain diseases are characterized by abnormally
strong neuronal synchrony. Coordinated Reset (CR)
stimulation [1,2] was computationally designed to
specifically counteract abnormal neuronal synchronization
processes by desynchronization. In the presence of spike
timing-dependent plasticity (STDP) [3] this leads to a
decrease of synaptic weights and ultimately to an anti-
kindling [4], 1.e. unlearning of abnormal synaptic
connectivity and abnormal neuronal synchrony. The long-
lasting desynchronizing impact of CR stimulation has been
verified 1n pre-clinical and clinical proof of concept studies
(e.g. [5]). However, as yet 1t 1s unclear how to optimally
choose the CR stimulation frequency, 1.e. the repetition rate
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at which the CR stimuli are delivered. We have chosen a
certain range of stimulation durations, where we were able
to achieve a reasonable success rate (1.e. anti-kindling) at
least for suitable stimulation frequencies. For this purpose,
CR stimulation was applied with Rapidly Varying
Sequences (RVS) [4] and Slowly Varying Sequences (SVS)
[6] Im a wide range of stimulation frequencies and
intensities. The RVS turn out to be more robust against
stimulation frequencies; however, the SVS can obtain
stronger anti-kindling effects [7]. In cases where the 1nitial
combination of CR intensity and frequency did not perform
efficiently, we 1mplement three plausible therapy-like
stimulation protocols, which aim to ameliorate the long-
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lasting effects. The first one prolongs the CR on period
before ceasing 1t completely, the second one consists of
repetition of CR on/off trial-periods with the same fixed CR
frequency while the third one incorporates a control
mechanism monitoring the degree of synchronization at the
end of the CR off period and adjust CR’s period for the
following trials via a mild modulation. The last one
manages both to induce global desynchronization and to
show very good robustness among different signals and
network dependent variations [8]. These findings can be
implemented into stimulation protocols for first in man and
proof of concept studies aiming at further improvement of
CR stimulation.
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Spike timing-dependent plasticity (STDP) rule
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Coordinated Reset (CR)
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The stimulation signals — single brief excitatory post-synaptic currents.
The evoked time-dependent normalized conductances of the postsynaptic
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Each single synaptic weight c¢;; 1s updated in an event-like manner, 1.e. we add or | membranes are represented by a-functions: 2

subtract an increment O -Ac;; for excitatory or inhibitory connections t—t, 5
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we restrict the values of ¢;; on the interval [0,1] mS/cm? for both excitatory and
inhibitory synapses, ensuring in this way that their strengthening or weakening

remains bounded.

Time evolution of CR stimulation signals
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= T,/(6Ns): the time-to-peak of G g, and ty, 1s the onset of the
k" activation of the stimulation site. K: stimulation intensity.
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T, : reference stimulation period

Protocol A: 5 Xlonger CR on

Protocol B: 5 CR on-off trials

Protocol C: Control scheme

with fixed CR T mildly varied CR T
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C,, (average synaptic connectivity) and R, (1°* order parmeter) at the end
of CR-off period as a function of stimulation intensity K and stimulation
frequency f
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Testing these Protocols for both RVS & SVS CR

stimulation and many (K, T;) —pairs, it turns out that
Protocol C and varied C perform better than 4 and B
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