000850126 001__ 850126
000850126 005__ 20240712100950.0
000850126 0247_ $$2doi$$a10.1525/elementa.302
000850126 0247_ $$2Handle$$a2128/19344
000850126 0247_ $$2WOS$$aWOS:000436610100001
000850126 0247_ $$2altmetric$$aaltmetric:44259302
000850126 037__ $$aFZJ-2018-04205
000850126 041__ $$aEnglish
000850126 082__ $$a550
000850126 1001_ $$0P:(DE-HGF)0$$aMills, Gina$$b0$$eCorresponding author
000850126 245__ $$aTropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation
000850126 260__ $$aWashington, DC$$bBioOne$$c2018
000850126 3367_ $$2DRIVER$$aarticle
000850126 3367_ $$2DataCite$$aOutput Types/Journal article
000850126 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531737439_26641
000850126 3367_ $$2BibTeX$$aARTICLE
000850126 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850126 3367_ $$00$$2EndNote$$aJournal Article
000850126 520__ $$aThis Tropospheric Ozone Assessment Report (TOAR) on the current state of knowledge of ozone metrics of relevance to vegetation (TOAR-Vegetation) reports on present-day global distribution of ozone at over 3300 vegetated sites and the long-term trends at nearly 1200 sites. TOAR-Vegetation focusses on three metrics over vegetation-relevant time-periods across major world climatic zones: M12, the mean ozone during 08:00–19:59; AOT40, the accumulation of hourly mean ozone values over 40 ppb during daylight hours, and W126 with stronger weighting to higher hourly mean values, accumulated during 08:00–19:59.Although the density of measurement stations is highly variable across regions, in general, the highest ozone values (mean, 2010–14) are in mid-latitudes of the northern hemisphere, including southern USA, the Mediterranean basin, northern India, north, north-west and east China, the Republic of Korea and Japan. The lowest metric values reported are in Australia, New Zealand, southern parts of South America and some northern parts of Europe, Canada and the USA. Regional-scale assessments showed, for example, significantly higher AOT40 and W126 values in East Asia (EAS) than Europe (EUR) in wheat growing areas (p < 0.05), but not in rice growing areas. In NAM, the dominant trend during 1995–2014 was a significant decrease in ozone, whilst in EUR it was no change and in EAS it was a significant increase.TOAR-Vegetation provides recommendations to facilitate a more complete global assessment of ozone impacts on vegetation in the future, including: an increase in monitoring of ozone and collation of field evidence of the damaging effects on vegetation; an investigation of the effects on peri-urban agriculture and in mountain/upland areas; inclusion of additional pollutant, meteorological and inlet height data in the TOAR dataset; where not already in existence, establishing new region-specific thresholds for vegetation damage and an innovative integration of observations and modelling including stomatal uptake of the pollutant.
000850126 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000850126 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
000850126 7001_ $$0P:(DE-HGF)0$$aPleijel, Håkan$$b1
000850126 7001_ $$0P:(DE-HGF)0$$aMalley, Christopher S.$$b2
000850126 7001_ $$0P:(DE-HGF)0$$aSinha, Baerbel$$b3
000850126 7001_ $$0P:(DE-HGF)0$$aCooper, Owen R.$$b4
000850126 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b5
000850126 7001_ $$0P:(DE-HGF)0$$aNeufeld, Howard S.$$b6
000850126 7001_ $$0P:(DE-HGF)0$$aSimpson, David$$b7
000850126 7001_ $$0P:(DE-HGF)0$$aSharps, Katrina$$b8
000850126 7001_ $$0P:(DE-HGF)0$$aFeng, Zhaozhong$$b9
000850126 7001_ $$0P:(DE-HGF)0$$aGerosa, Giacomo$$b10
000850126 7001_ $$0P:(DE-HGF)0$$aHarmens, Harry$$b11
000850126 7001_ $$0P:(DE-HGF)0$$aKobayashi, Kazuhiko$$b12
000850126 7001_ $$0P:(DE-HGF)0$$aSaxena, Pallavi$$b13
000850126 7001_ $$0P:(DE-HGF)0$$aPaoletti, Elena$$b14
000850126 7001_ $$0P:(DE-HGF)0$$aSinha, Vinayak$$b15
000850126 7001_ $$0P:(DE-HGF)0$$aXu, Xiaobin$$b16
000850126 770__ $$aTropospheric Ozone Assessment Report
000850126 773__ $$0PERI:(DE-600)2745461-7$$a10.1525/elementa.302$$p47$$tElementa$$v6$$x2325-1026$$y2018
000850126 8564_ $$uhttps://juser.fz-juelich.de/record/850126/files/302-5278-1-PB.pdf$$yOpenAccess
000850126 8564_ $$uhttps://juser.fz-juelich.de/record/850126/files/302-5278-1-PB.gif?subformat=icon$$xicon$$yOpenAccess
000850126 8564_ $$uhttps://juser.fz-juelich.de/record/850126/files/302-5278-1-PB.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000850126 8564_ $$uhttps://juser.fz-juelich.de/record/850126/files/302-5278-1-PB.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000850126 8564_ $$uhttps://juser.fz-juelich.de/record/850126/files/302-5278-1-PB.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000850126 909CO $$ooai:juser.fz-juelich.de:850126$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000850126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b5$$kFZJ
000850126 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000850126 9141_ $$y2018
000850126 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850126 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000850126 920__ $$lyes
000850126 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000850126 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x1
000850126 9801_ $$aFullTexts
000850126 980__ $$ajournal
000850126 980__ $$aVDB
000850126 980__ $$aUNRESTRICTED
000850126 980__ $$aI:(DE-Juel1)JSC-20090406
000850126 980__ $$aI:(DE-Juel1)IEK-8-20101013
000850126 981__ $$aI:(DE-Juel1)ICE-3-20101013