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Understanding (i) the emergence of diffusion from truly microscopic principles continues to be a major

challenge in experimental and theoretical physics. At the same time, isolated quantum many-body systems have

experienced an upsurge of interest in recent years. Since in such systems the realization of a proper initial state

is the only possibility to induce a nonequilibrium process, understanding (ii) the largely unexplored role of the

specific realization is vitally important. Our work reports a substantial step forward and tackles the two issues

(i) and (ii) in the context of typicality, entanglement as well as integrability and nonintegrability. Specifically, we

consider the spin-1/2 XXZ chain, where integrability can be broken due to an additional next-nearest neighbor

interaction, and study the real-time and real-space dynamics of nonequilibrium magnetization profiles for a class

of pure states. Summarizing our main results, we show that signatures of diffusion for strong interactions are

equally pronounced for the integrable and nonintegrable case. In both cases, we further find a clear difference

between the dynamics of states with and without internal randomness. We provide an explanation of this difference

by a detailed analysis of the local density of states.

DOI: 10.1103/PhysRevB.97.174430

I. INTRODUCTION

Understanding the dynamics of quantum many-body sys-

tems constitutes a central question in many areas of modern

experimental and theoretical physics. While this question has a

long and fertile history, it has attracted continuously increasing

attention in the last decade [1,2]. This upsurge of interest is also

related to the advent of novel materials and cold atomic gases

[3,4], the discovery of new states of matter such as many-body

localized phases [5–7], the invention of powerful numerical

techniques such as density-matrix renormalization group [8,9],

as well as the emergence of fresh key concepts, with typicality

of pure states [10–21] and eigenstate thermalization hypothesis

[22–24] as prime examples. Although clarifying the mere

existence of equilibration and thermalization in isolated sys-

tems has seen substantial progress [25,26], rigorously deriving

the macroscopic phenomena of (exponential) relaxation and

(diffusive) transport from truly microscopic principles is still

a major challenge [27,28].

In this context, two equally important questions are

(i) the role of integrability and nonintegrability and (ii) the

influence of the specific initial-state realization. On the one

hand, integrable systems are characterized by a macroscopic

number of (quasi)local conservation laws [29–33] and the over-

lap with these conserved quantities leads to unconventional

equilibration and thermalization [34–36] and nondecaying

currents [37–39]. On the other hand, the overlap with one of

the conserved quantities is not guaranteed for all parameters
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of the model, observables, and initial conditions. Therefore

integrability as such does not rule out the possibility of regular

relaxation and transport processes. In fact, clear signatures of

diffusion have been observed in both, the spin-1/2 Heisenberg

chain above the isotropic point [40–43] and in the Fermi-

Hubbard model with strong onsite repulsion [44–46], at least

in the limit of high temperatures. This remarkable observation

suggests that nonintegrability, chaos, and ergodicity are no

prerequisite for the existence of diffusion. However, it has also

been demonstrated that the dynamics of integrable systems

can strongly depend on details of the particular initial states

chosen [43,46]. Thus an intriguing question is whether or

not such a strong dependence can also appear in the case

of integrability-breaking perturbations. In this case, another

intriguing question is whether or not signatures of diffusion

become more pronounced.

In this paper, we study these questions and focus, as a first

step, on a nonintegrable version of the spin-1/2 Heisenberg

model in one dimension. While integrability can be certainly

broken in many different ways, we do so by taking into account

an additional interaction between next-nearest neighbors. For

this model, we analyze the real-time and real-space dynamics

of magnetization as resulting for a convenient class of nonequi-

librium initial states. These states have been introduced in

Ref. [43], are pure, and realize a sharp density peak on top of

homogeneous many-particle background at any temperature,

as illustrated in Fig. 1. Since this class of initial states allows

for changing internal degrees of freedom without modifying

the initial density profile, we are able to investigate whether

and in how far such internal details influence the real-time

broadening. Here, a useful concept is typicality of pure states.

In the case of internal randomness, it implies a dynamical
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FIG. 1. At time t = 0, the initial density profile exhibits a central

peak in the middle of the chain on top of a homogeneous many-particle

background. The height of this peak can be controlled by an additional

parameter a > 0 (see Appendix for details). In the present paper, the

real-time broadening of such profiles is studied. In particular, we are

interested in the role of entanglement and internal randomness of the

pure state |ψ(0)〉.

behavior in agreement with the equilibrium correlation func-

tion and allows us to perform large-scale numerical simulations

in the framework of linear response.

Summarizing our main results in a nutshell, we show

that signatures of diffusion are equally pronounced for the

integrable and nonintegrable case. We further find in both

cases a strong difference between the dynamics of typical

states (with internal randomness) and untypical states (without

any randomness). We further provide an explanation of this

difference by a detailed analysis of entanglement and local

density of states.

The rest of this paper is structured as follows. First, we

introduce in Sec. II the Heisenberg spin-1/2 chain with an

integrability-breaking interaction between neighbors at next-

nearest sites. Then, we discuss the framework in Sec. III and

give an overview over our observables and initial states, linear

response, and diffusion. Afterward, we discuss in Sec. IV the

concept of typicality and our numerical approach. Eventually,

we present our results in Secs. V and VI and particularly

analyze integrability versus nonintegrability, typical versus

untypical states, as well as entanglement and local density of

states. We finally close with a summary and conclusions in

Sec. VII and provide additional information in Appendix.

II. MODEL

The present paper studies the one-dimensional spin-1/2

XXZ chain, where the standard model is extended to in-

corporate also interactions between next-nearest neighbors.

The Hamiltonian H = HXXZ + H′ with periodic boundary

conditions reads

HXXZ = J

L∑

l=1

(
Sx

l Sx
l+1 + S

y

l S
y

l+1 + �Sz
l S

z
l+1

)
, (1)

H′ = J

L∑

l=1

�′Sz
l S

z
l+2, (2)

0
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FIG. 2. Level-spacing distribution P (s) of the spin-1/2 XXZ

chain with L = 20, for a single symmetry subsector labeled by the

quantum numbers Sz = 1 and k = 1. In the integrable case, �′ = 0,

the distribution is well described by a Poissonian, whereas for the

nonintegrable case, � = �′ = 1.5, one observes Wigner statistics.

where Si
l , i ∈ {x,y,z} are spin-1/2 operators at site l, L is

the total number of sites, and J > 0 is the antiferromagnetic

exchange constant. Using the Jordan-Wigner transformation,

H can be mapped to an one-dimensional model of spinless

fermions with nearest and next-nearest neighbor interactions,

where the strength of the interactions is set by � and �′,
respectively. In the case �′ = 0, the model is integrable in

terms of the Bethe Ansatz, with the energy current being

exactly conserved [30,47], whereas integrability is broken for

any �′ �= 0.

The difference between the integrable and the nonintegrable

model is also reflected in the level-spacing distribution P (s),

see Fig. 2. For �′ = 0 [Fig. 2(a)], P (s) exhibits Poissonian

behavior, in contrast to the nonintegrable case � = �′ �= 0

[Fig. 2(b)], where P (s) obeys the quantum chaotic Wigner

distribution. Note that a proper analysis of P (s) requires

an unfolding of the spectrum [48,49]. Moreover, here we

restrict ourselves to a single subsector ofHwith magnetization

Sz = 1 and momentum k = 1, in order to eliminate all trivial

symmetries. Note, however, that for the rest of this paper we

always consider the full Hilbert space without any restriction.

III. FRAMEWORK

A. Observables and initial states

In this paper, the real-time dynamics of local occupation

numbers

nl = Sz
l +

1

2
(3)

is studied. To this end, expectation values of the form

pl(t) = Tr[ρ(t) nl] (4)

are evaluated, where ρ(t) is the density matrix at time t ,

ρ(t) = e−iHt |ψ(0)〉 〈ψ(0)| eiHt , (5)

and |ψ(0)〉 is a pure state. The special class of (normalized)

nonequilibrium initial states |ψ(0)〉 considered in this paper

are constructed as

|ψ(0)〉 ∝ (nL/2 − a) |�〉 , |�〉 =
2L∑

k=1

ck |ϕk〉 , (6)
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where ck are complex coefficients and a � 0 is a real number.

The states |ϕk〉 denote the common eigenbasis of all nl , i.e.,

the Ising basis. The operator nL/2 acts as a projection onto all

states with a spin-up in the middle of the chain. In the case

a = 0, we consequently have pL/2(0) = 1 by construction. By

choosing a > 0, it is, however, straightforward to adjust this

initial amplitude. (For more details, see the Appendix). For

the particular choice of all coefficients ck being the same in

Eq. (6), we moreover find pl �=L/2 = peq = 1/2. Thus one ends

up with an initial density profile which has a central peak in the

middle of the chain, on top of a homogeneous many-particle

background, see Fig. 1. However, exactly the same density

profile arises if real and imaginary part of the ck are randomly

drawn from a Gaussian distribution with zero mean (according

to the unitary invariant Haar measure [50,51]).

Although not distinguishable at t = 0, it has been demon-

strated [43] that the dynamics for times t > 0 can depend

strongly on whether |ψ(0)〉 is a “typical” state with random ck

or an “untypical” state where all ck are the same. A central aim

of the present paper is to understand the crucial differences

between these two choices of initial states. To this end, the

states are analyzed in terms of their local density of states,

their internal randomness, as well as their entanglement. In this

respect, it is important to note that, for all ck being the same,

it is possible to write |ψ(0)〉 as a product state with a spin-up

state |↑〉 in the middle of the chain and a spin-up/spin-down

superposition at all other sites,

|ψ(0)〉 ∝ . . . (|↑〉 + |↓〉) ⊗ |↑〉 ⊗ (|↑〉 + |↓〉) . . . . (7)

On the other hand, for completely or at least partially random

coefficients ck , such a full product structure is absent.

B. Kubo formula

Within the framework of linear response theory (LRT),

transport coefficients can be computed from current-current

correlation functions

〈j (t)j 〉 = Tr[j (t)jρeq], (8)

which are evaluated within the canonical equilibrium en-

semble ρeq = e−βH /Z at inverse temperature β = 1/T

[52–54], where Z = Tr[e−βH] is the partition function. The

time argument has to be understood with respect to the

Heisenberg picture.

In the present paper, our focus is on the transport of

magnetization and the operator j therefore denotes the spin

current. Since the total magnetization Sz =
∑

l S
z
l is con-

served, [H,Sz] = 0, the spin current j is well-defined and

follows from the lattice continuity equation

d

dt
Sz

l = i
[
H,Sz

l

]
= jl−1 − jl . (9)

Thus, for the Hamiltonian H, as defined in Eqs. (1) and (2), j

takes on the well-known form

j =
L∑

l=1

jl = J

L∑

l=1

(
Sx

l S
y

l+1 − S
y

l Sx
l+1

)
, (10)

which is exactly conserved only in the case � = �′ = 0. In

LRT, the connection between transport properties and current

autocorrelations is given by the Kubo formula which, in case

of the spin current, can be written as

σ (ω) =
1 − e−βω

ωL

∫ ∞

0

eiωt 〈j (t)j 〉 dt, (11)

where σ (ω) is the conductivity at the inverse temperature β.

Often, Re σ (ω) is decomposed into a δ function at ω = 0 and

a part for frequencies ω �= 0,

Re σ (ω) = C̄δ(ω) + σreg(ω), (12)

where C̄ is the so-called Drude weight [37–39]. In fact, C̄

can be directly related to the long-time limit of the current

autocorrelation function C(t) [55–61],

C̄ =
∫ t2

t1

dt
C(t)

t2 − t1
, (13)

with C(t) = Re〈j (t)j 〉/L. Here, t1 and t2 are selected from a

region where C(t) has decayed to its long-time value C(t →
∞) � 0. Thus a nonzero Drude weight exists whenever the

current is at least partially conserved and indicates ballistic

transport [37–39]. In cases where the Drude weight vanishes

and transport is not ballistic in the thermodynamic limit, the dc

conductivity σdc = σreg(ω → 0) is of interest and follows from

a zero-frequency Fourier transform of C(t) [42,58–60,62],

σdc = β

∫ tmax

0

dt C(t). (14)

Since the Drude weight C̄ will always be nonzero for a finite

system, the integral in Eq. (14) diverges in the limit tmax → ∞
[58]. Therefore the cutoff time tmax < ∞ is chosen to be finite,

but long enough to ensure that σdc is effectively independent

of the particular choice of tmax. Note that there exist different

definitions for C̄ in the literature, with additional prefactors π ,

2π , and β.

C. Diffusion

As discussed in Sec. III B, a finite Drude weight immedi-

ately implies ballistic transport. However, a vanishing Drude

weight not necessarily leads to diffusive behavior. In this

section, we therefore summarize the conditions for diffusion.

Defined on a discrete lattice, the dynamics of some density

(here magnetization density) pl is said to be diffusive if it

fulfills a diffusion equation of the form [63,64]

d

dt
pl(t) = D[pl−1(t) − 2pl(t) + pl+1(t)], (15)

where D is the time-independent diffusion constant. For this

equation, one finds a specific solution for the time and site

dependence of pl(t),

pl(t) − peq =
1

2
exp(−2Dt)Bl−L/2(2Dt), (16)

with Bl(t) being the modified Bessel function of the first

kind. This lattice solution can be well approximated by the

corresponding continuum solution

pl(t) − peq =
1

2

1
√

2π�(t)
exp

[
−

(l − L/2)2

2�2(t)

]
, (17)
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where the spatial variance is given by

�2(t) = 2Dt. (18)

Note that, in the limit �(t → 0), Eq. (17) becomes a δ function

located at lattice site l = L/2, which coincides with our initial

density profile.

Generally, the spatial variance �2(t) of an arbitrary distri-

bution is given by

�2(t) =
L∑

l=1

l2 δpl(t) −

[
L∑

l=1

l δpl(t)

]2

, (19)

where δpl(t) ∝ [pl(t) − peq] and
∑L

l=1 δpl(t) = 1. Thus, in the

case of diffusive transport, the variances from Eqs. (18) and

(19) exactly coincide with each other, and our nonequilibrium

dynamics should be described by Gaussians as given in

Eq. (17).

However, a time-independent diffusion constant, and the

existence of diffusion as such, is questionable in view of

unitary Schrödinger dynamics [63]. Moreover, as we will also

see during the discussion of our results, it might not always

be appropriate to draw conclusions only on the basis of the

real-space data. Therefore we here introduce an useful scheme:

A Fourier transform of the diffusion equation in Eq. (15) yields

d

dt
pq(t) = −2(1 − cos q)Dq(t)pq(t), (20)

where we additionally allow for a time- and momentum-

dependent Dq(t), and momentum q takes on the values

q = 2πk/L with k = 0,1, . . . ,L − 1. Rearranging Eq. (20)

and using the abbreviation q̃2 = 2(1 − cos q) then gives the

generalized diffusion coefficient [41]

Dq(t) =
d/dt pq(t)

−q̃2 pq(t)
. (21)

In the case of diffusive transport, the behavior of Dq(t) can be

qualitatively understood as follows. On the one hand, Dq(t) ∝
t always increases linearly for sufficiently short times [41]. On

the other hand, above the mean free time τ and above the mean

free path λ, i.e., t > τ and π/q > λ, Dq(t) eventually turns into

a plateau with Dq(t) ≈ const, which marks the hydrodynamic

regime.

Eventually, it is also instructive to connect Dq(t) to linear

response theory. Assuming pq (t) ∝ Re 〈Sz
q(t)Sz

−q〉, where Sz
q =∑

l e
iqlSz

l /
√

L, it follows in the limit q → 0 that [41]

D(t) =
1

χ

∫ t

0

dt ′ C(t ′), (22)

where the static susceptibility is χ = 1/4 in the limit β → 0.

Under the above assumption, D(t) is also related to the time

derivative of the spatial variance [45,65–67],

d

dt
�2(t) = 2D(t). (23)

The time dependence of D(t) can be summarized as follows.

For the noninteracting case � = �′ = 0, we have [H,j ] =
0, leading to D(t) ∝ t such that �2(t) ∝ t2 scales ballis-

tically for all t . Such ballistic behavior is also known to

occur for partial current conservation at � < 1 and �′ = 0

[31,32,38,55–57,60,68–75]. In the case of diffusive transport,

D(t) = const and �(t) ∝ t . Moreover, a process is called

superdiffusive if �(t) ∝ tα with α ∈]1,2[ and subdiffusive for

α ∈]0,1[.

However, it is important to note that D(t) yields no in-

formation beyond the mere width of density profiles. It is

also worth pointing out in that D(t) addresses the overall

dynamics and does not distinguish between transport channels

with potentially different behavior [84,85].

IV. DYNAMICAL QUANTUM TYPICALITY

A. Current-current correlations

The concept of typicality [10–21] states that a single pure

state can have the same “properties” as the full statistical

ensemble. Remarkably, this concept does not require eigenstate

thermalization [22–24] and also applies to the dynamics of

expectation values. In particular, dynamical quantum typicality

(DQT) has turned out to be a powerful method for the accurate

calculation of real-time current correlation functions in huge

Hilbert spaces [16,57,60,76].

The main idea is to replace the trace Tr[•] in Eq. (8)

by a single scalar product 〈�| • |�〉, where |�〉 is a pure

state, randomly drawn from the full Hilbert space according

to the unitary invariant Haar measure [50,51]. The current

autocorrelation function can then be written as [16,57,60,76]

C(t) =
Re 〈�| j (t) j e−βH |�〉

L 〈�| e−βH |�〉
+ ǫ(|�〉) (24)

or, equivalently, as

C(t) =
Re 〈φ(t)| j |ϕ(t)〉
L 〈φ(0)|φ(0)〉

+ ǫ(|�〉), (25)

where we have introduced the two auxiliary pure states

|φ(t)〉 = e−iHte−βH/2 |�〉 , (26)

|ϕ(t)〉 = e−iHtj e−βH/2 |�〉 , (27)

which only differ by the additional current operator in Eq. (27).

It is important to note that the error in Eq. (24) scales as

ǫ ∝ 1/
√

d for β → 0, with d = 2L being the dimension of the

Hilbert space. Thus, for the large system sizes we are interested

in, this error is negligibly small and the typicality approxi-

mation can be regarded as practically exact. Furthermore, the

time dependence, e.g., of |φ(t)〉, can be conveniently evaluated

by iteratively solving the real-time Schrödinger equation (see

Sec. IV C).

B. Density-density correlations

Concerning the dynamics of local occupation numbers, we

can perform the following calculation [43,46]. We start from

an equilibrium correlation function in the limit β → 0,

Cl(t) = 2〈nL/2 nl(t)〉 = 2
Tr[nL/2 nl(t)]

2L
(28)

= 2
Tr[nL/2 nl(t) nL/2]

2L
, (29)

where the cyclic invariance of the trace and the projection prop-

erty n2
L/2 = nL/2 has been exploited. According to typicality,
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also this expression can be rewritten using a randomly drawn

pure state |�〉,

Cl(t) = 2
〈�| nL/2 nl(t) nL/2 |�〉

〈�|�〉
+ ǫ(|�〉) (30)

=
〈ψ | eiHt nl e−iHt |ψ〉

〈ψ |ψ〉
, (31)

where we have used the definition of our initial state in Eq. (6)

and 〈ψ |ψ〉 = 〈�|�〉 /2. Moreover, we have dropped the error

ǫ for clarity. Since |ψ(t)〉 = e−iHt |ψ〉, we finally find

Cl(t) =
〈ψ(t)| nl |ψ(t)〉
〈ψ(0)|ψ(0)〉

= pl(t). (32)

Thus, it follows that, although the initial states in Eq. (6)

have to be considered as far from equilibrium, the resulting

nonequilibrium dynamics is directly related to an equilibrium

correlation function.

C. Forward propagation of pure states

Using exact diagonalization (ED), it is possible to compute

the time evolution of a pure state via

|ψ(t)〉 =
∑

n

eiEntcn |n〉 , (33)

where |n〉 are eigenvectors of the Hamiltonian with correspond-

ing eigenvalues En, and cn = 〈n|ψ(0)〉 denotes the overlap

of |n〉 and |ψ(0)〉. However, the exponential growth of the

Hilbert space represents a natural limitation of ED. Usually,

this growth is at least partially compensated by exploiting the

symmetries of the Hamiltonian. To repeat, the Hamiltonian H
in Eqs. (1) and (2) conserves total magnetization Sz =

∑
l S

z
l .

Moreover, it is invariant under translation by one lattice site

and crystal momentum k becomes a good quantum number.

Thus it is in principle possible to divide the Hilbert space into

subspaces, classified by Sz and k. However, since the operator

nL/2 in the definition (6) of the initial states does not respect

translational invariance, it becomes less profitable to use this

symmetry for our calculations. In any case, ED is limited to

systems with a maximum of L ∼ 20 sites.

Therefore we proceed differently in the present paper and

rely on a forward propagation of |ψ(t)〉 in real time. Such a

propagation can be done by means of a fourth-order Runge-

Kutta (RK4) scheme [16,57,60,76] or by more sophisticated

methods such as Chebyshev polynomials [77,78] or Trotter

decompositions [43,46,79]. Using these methods, no diago-

nalization of H is needed and, since H is usually relatively

sparse, the matrix-vector multiplications can be implemented

very memory-efficient. In this paper, we use a RK4 method

for chains up to L � 26 sites. For longer chains, we employ

a Trotter product formula which allows us to treat systems

with as many as L = 36 spins. For this L, the largest subsector

with Sz = 0 has dimension d ≈ 1010 and is several orders of

magnitude larger than the matrices treatable by state-of-the-art

ED.

V. DYNAMICS OF TYPICAL AND UNTYPICAL STATES

We now present our numerical results. As a first step in

Sec. V A, we study current autocorrelations and Drude weights,

10−3
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0 50 100
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C
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2
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J
2

1/L
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∆ = ∆ = 0.5 ×3

FIG. 3. (a) Current autocorrelation function C(t) up to times tJ =
100 and for systems withL = 26 and 33 sites (arrows). Data are shown

for the integrable case �′ = 0 with � = 0.5 and � = 1 as well as for

the nonintegrable case � = �′ = 0.5. (b) Finite-size scaling of the

Drude weight C̄ for selected values of � and �′. For the integrable

cases �′ = 0, the data are obtained according to Eq. (13) and from

the finite time interval [t1J,t2J ] = [70,100], cf. Fig. 3(a), whereas

for � = �′ = 0.5, the interval [t1J,t2J ] = [250,300] is chosen. The

dashed lines are linear fits to the data. In the case � = 0.5, � = 0, we

additionally show an analytic bound for C̄ [31,32]. Note that L = 33

data for the integrable cases have been taken from Ref. [57].

i.e., results obtained within the framework of LRT. These

results will be useful in the discussion of the nonequilibrium

dynamics in the subsequent Sec. V B.

A. Current autocorrelations and Drude weights

According to Eq. (13), the Drude weight C̄ is related to the

long-time limit of the current-current correlation function C(t).

Since C̄ > 0 for finite systems, a careful finite-size scaling

needs to be performed, in order to draw reliable conclusions

on C̄ in the thermodynamic limit. Therefore, in Fig. 3(a), C(t)

is shown for different choices of � and �′ and for various

chain lengths L.

While it is certainly convenient to start our discussion

with the integrable model, i.e., �′ = 0, we should stress that

corresponding results and a detailed discussion can be found

already in Ref. [57]. For �′ = 0 and at the isotropic point

� = 1, one observes that, after an initial decay, C(t) reaches

an approximately constant long-time value for times tJ � 50.

Moreover, this long-time value decreases for increasing system

size. On the contrary, for �′ = 0 and � = 0.5, a significant

dependence of C(t) and its long-time value on L is not visible.

Most important, however, in the case of a nonzero next-nearest
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FIG. 4. Time-space density plot of occupation numbers pl(t) for

a typical initial state |ψ(0)〉 in the XXZ spin-1/2 chain with L = 36

sites and different anisotropies � = �′ = 1.5, 1, and 0.5 [(a)–(c)].

neighbor interaction �′ = 0.5, C(t) decays to substantially

smaller values. In fact, even at times tJ = 300 (not shown),

C(t) has not yet reached its stationary value.

In Fig. 3(b), we show a finite-size scaling of the Drude

weight C̄. For the integrable model, the data is obtained ac-

cording to Eq. (13) and from the finite time interval [t1J,t2J ] =
[70,100], as indicated in Fig. 3(a). Linear extrapolations of the

data towards the thermodynamic limit are also depicted. In the

case � = 0.5, one observes that the Drude weight converges

towards a finite value C̄ > 0, in quantitative agreement with

analytical results [31,32]. For the case � � 1, the linear fit

clearly suggest a vanishing Drude weight C̄ = 0 for L → ∞.

For the nonintegrable model � = �′ = 0.5, C̄ is extracted

from the interval [t1J,t2J ] = [250,300]. As mentioned, C(t)

has not completely decayed even at these long times such

that the data has to be understood as an upper bound for C̄.

Apparently, this upper bound decreases faster than a power

law with increasing L and is most likely expected to vanish for

L → ∞, as expected for nonintegrable systems [38,39].

B. Real-space dynamics of typical states

To start the discussion of nonequilibrium dynamics in

real space and time, we first consider typical initial states.

In Fig. 4, a time-space density plot of occupation numbers

pl(t) is shown for a chain with L = 36 sites and different

anisotropies � = �′ = 1.5, 1, 0.5, up to times tJ = 20. For

all parameters shown, one observes that the sharp initial

peak broadens monotonically with time. In the case of weak

interactions [Fig. 4(c)], this broadening is still linear due to a

long mean free time τ = O(10). This can be also understood

with respect to the current autocorrelation [see Fig. 3(a)], which

is not fully decayed at this time scale. On the other hand, for
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FIG. 5. (a) and (b) Density profile pl(t) with respect to site l

at fixed times tJ = 5 and 10 for � = 1.5, �′ = 0 as well as � =
�′ = 1.5 shown in a semilogarithmic plot. The difference between

the integrable and nonintegrable model are remarkably small and

the data are well described by Gaussian fits over several orders of

magnitude. (c) Time-dependent diffusion coefficient D(t) and profile

width �(t) according to LRT for L = 34 (�′ = 0) [60] and L = 36

(�′ = 1.5). For comparison, the symbols represent the width �(t) of

the nonequilibrium data in (a) and (b) and are in convincing agreement

with LRT.

larger anisotropies, the broadening of the density profiles is

nonlinear and significantly slower, which can be explained by

the increased scattering of particles.

For a more detailed analysis, Figs. 5(a) and 5(b) show

the density profile pl(t) for fixed times tJ = 5 and 10 in a

semilogarithmic plot, both for the integrable case with � =
1.5, �′ = 0, and the nonintegrable case with � = �′ = 1.5.

One observes that the data are remarkably well described

by Gaussians over several orders of magnitude. Moreover,

there are no significant differences between the integrable

and the nonintegrable model visible. Thus we conclude that,

for a large anisotropy � = 1.5, the dynamics of our typical

initial state is basically unaffected by the strong additional

next-nearest neighbor interaction, which can be also explained

analytically on the basis of projection operator techniques [80].

In Fig. 5(c), we additionally compare the nonequilibrium

dynamics to results from LRT. To this end, the time-dependent

diffusion coefficient D(t) and the corresponding width �(t)

[see Eqs. (22) and (23)] are shown for L = 36 sites. These LRT

results are compared to the values of �(t) according to Eq. (19),

i.e., as directly extracted from the density profiles in Figs. 5(a)

and 5(b). Overall, we find a convincing agreement between

the nonequilibrium dynamics and LRT. Most importantly,

however, one observes D(t) ≈ const at the time scales depicted

[42,58]. Thus �(t) ∝
√

t , both for �′ = 0 and �′ �= 0. This

scaling as well as the Gaussian form of the density profiles

clearly indicate diffusive transport in this parameter regime,

irrespective of the model being integrable or nonintegrable.

This is a central result of our paper.

Next, let us discuss the case of smaller � and �′ in

more detail. Completely analogous to Fig. 5, the density

profiles pl(t) for � = 1, �′ = 0, and � = �′ = 1 are shown in
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FIG. 6. (a) Density profile pl(t) with respect to site l at fixed

times tJ = 5, 10 for � = 1, �′ = 0, and � = �′ = 1, shown in a

semilogarithmic plot. (b) Time-dependent diffusion coefficient D(t)

and profile width �(t) according to LRT for L = 34 (�′ = 0) [60]

and L = 36 (�′ = 1). The symbols represent the width �(t) of the

nonequilibrium data in (a). τ approximately marks the mean free time.

Figs. 6(a) and 6(b) for fixed times tJ = 5 and 10. Compared to

the previous case of larger anisotropies, we observe that it is not

possible anymore to describe the density profiles by Gaussian

fits, both for the integrable and the nonintegrable model. Fur-

thermore, in contrast to the case of larger anisotropies, the time

dependence of D(t) and �(t) exhibits significant differences

between �′ = 0 and �′ �= 0. On the one hand, the nonconstant

D(t) in the integrable case is clearly inconsistent with diffusion

but rather suggests superdiffusive behavior [40,81,82], see also

[83]. In contrast, at low temperatures, signatures of diffusive

behavior have been reported [84–86] (see these works also

for a discussion of � < 1). On the other hand, for �′ �= 0,

one observes D(t) ≈ const as well as �(t) ∝
√

t . However,

due to the non-Gaussian density profiles in Fig. 6(a), one

might argue that the possibility of diffusion is still ruled out.

It should be noted, however, that for times below the mean

free time τJ ≈ 2 one finds D(t) ∝ t [see Fig. 6(b)] and only

for times t > τ the diffusion coefficient D(t) turns into a

constant plateau. Thus, at short times, the sharp initial density

profile broadens ballistically. Consequently, even if there exists

diffusive behavior at longer time scales, one generally cannot

expect clean Gaussian profiles but rather a superposition of

such Gaussians.

C. Momentum-space dynamics of typical states

Due to the above reasoning, it is sometimes not sufficient

to draw conclusions on diffusive or nondiffusive behavior only

on the basis of the real-space data, with single-site resolution

below the mean free path. Consequently, we proceed also in a

different way and analyze the generalized diffusion coefficient

Dq(t), as introduced in Eq. (21).

In Figs. 7(a) and 7(b), the generalized diffusion coeffi-

cient Dq(t) is shown for large anisotropies � = 1.5, �′ =
0, and � = �′ = 1.5. Nonequilibrium results at momentum

q/(2π/L) = 1 and 2 are compared to LRT for q = 0, up to
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FIG. 7. Generalized diffusion coefficientDq (t), obtained from the

nonequilibrium density profiles according to Eq. (21) for momenta

q/(2π/L) = k and L = 36. As a comparison, Dq=0(t) according to

LRT is shown, for L = 34 (�′ = 0) [60] and L = 36 (�′ �= 0). The

other parameters: (a) � = 1.5, �′ = 0; (b) � = �′ = 1.5; (c) � = 1,

�′ = 0; and (d) � = 1, �′ = 1. The inset in (a) shows the LRT data

for L = 34 again but now for times up to t = 100.

times tJ = 15. Overall, the integrable model in Fig. 7(a) and

the nonintegrable model in Fig. 7(b) behave very similarly. In

both cases, one observes that at least the first three momenta

feature a plateau with Dq(t) ≈ const, which is a clear signature

of diffusion and confirms our earlier conclusion. Note that

the slight increase of Dq(t) in Fig. 7(a) is not necessarily

a finite-size effect [42,60]. Note further that this increase is

unrelated to the much stronger increase at long times, which is

caused by the finite-size Drude weight, see inset of Fig. 7(a).

Now, we come back to the case of smaller anisotropies.

In Fig. 7(c), Dq(t) is depicted for the integrable case � = 1,

�′ = 0, while Fig. 7(d) shows the nonintegrable case � =
�′ = 1. For �′ = 0, one clearly observes that the diffusion

coefficient increases with time for all q � 0. Moreover, even

for the smallest nonzero momentum q/(2π/L) = 1, we see de-

viations between q �= 0 and q = 0. For �′ �= 0, Dq(t) behaves

significantly different. For q = 0, we have Dq(t) ≈ const,

which is accurately reproduced at least for q/(2π/L) = 1.

For larger wave vectors, however, we are unable to find a

plateau with constant Dq(t). Thus compared to the case of

larger anisotropies [Figs. 7(a) and 7(b)], the hydrodynamic

regime is shifted to smaller momenta if �, �′ is decreased.

Based on the data in Fig. 7, we conclude that the real-time

dynamics of typical states in the XXZ chain shows diffusive

behavior, not only for large anisotropies � = 1.5 but also for

smaller � = 1, if integrability is broken due to an additional

next-nearest neighbor interaction �′ > 0. This is another main

result of the present paper. Note that a similar result is likely

to appear for even smaller anisotropies, e.g., � = �′ = 0.5.

However, due to a large mean free path, we are not able to draw

reliable conclusions in this parameter regime. More details on

this issue are given in the Appendix.

D. Real-space dynamics of untypical states

Now, we turn to our study of untypical initial states, where

the coefficients ck in Eq. (6) are all chosen to be equal. Figure 8

shows a time-space density plot of occupation numbers pl(t)
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FIG. 8. Time-space density plot of occupation numbers pl(t) for

an untypical initial state |ψ(0)〉 in the XXZ spin-1/2 chain with L =
33 sites and different anisotropies � = �′ = 1.5, 1, and 0.5 [(a)–(c)].

for a chain with L = 33 sites. Completely analogous to Fig. 4,

panels (a)–(c) show results for � = �′ = 1.5, 1, and 0.5. First

of all, one observes that the time dependence of the density

profiles strongly differs from the case of typical initial states.

On the one hand, for large interactions � [see Fig. 8(a)], the

broadening is basically frozen and the density profile is very

narrow even at times tJ = 20, similar to Ref. [87]. On the other

hand, for small interactions � [see Fig. 8(c)], one observes

pronounced jets, which propagate freely until they eventually

hit the boundary at times tJ ∼ 20. Such a behavior of untypical

states has been already found for the integrable model �′ =
0 [43]. Our present results clearly show that this behavior is

stable against perturbations �′ �= 0.

VI. PROPERTIES OF TYPICAL AND UNTYPICAL STATES

In the following, we intend to shed light onto the properties

of typical and untypical initial states, in order to provide

possible explanations for the large differences in the real-time

dynamics. As a starting point, we first analyze the states with

respect to their local density of states.

A. Local density of states

The local density of states (LDOS) P (E) of a state |ψ〉, as

well as the density of states (DOS) �(E) of a Hamiltonian H,

is given by

P (E) =
∑

n

| 〈n|ψ〉 |2 δ(E − En), (34)

�(E) =
∑

n

δ(E − En), (35)

0
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FIG. 9. Density of states �(E) of H with L = 24 sites and local

density of states P (E) for states with random ck and equal ck . The

other parameters are (a) � = 1.5, �′ = 0 and (b) � = �′ = 1.5.

where |n〉 are the eigenvectors of H with corresponding

eigenvalues En. While P (E) and �(E) can be calculated using

ED of small systems, we proceed differently here and employ

a numerical approach [88,89]. This approach relies again on

the real-time propagation of pure state and, for �(E), on the

concept of typicality. Details on the numerical calculation of

P (E) and �(E) can be found in the Appendix.

In Fig. 9, the DOS of H with L = 24 sites is shown for

both, an integrable (� = 1.5, �′ = 0) and a nonintegrable

(� = �′ = 1.5) case. Note that L = 24 is sufficient to capture

the overall shape of the DOS. In both cases, �(E) has a

broad Gaussian-like shape [89]. In addition, the LDOS P (E)

is shown for a typical state with random coefficients ck and

an untypical state where all ck are the same. For the typical

state, P (E) apparently coincides with the DOS of H. This fact

also reflects that a typical state imitates the high-temperature

statistical ensemble. In contrast, for an untypical state, P (E)

is sharply peaked at the upper border of the spectrum. This

fact clearly shows that an untypical state does not imitate

the high-temperature statistical ensemble. Moreover, since in

the gapped phase � > 1 the dynamics at the spectral border

is expected to be insulating, this fact provides a reasonable

explanation for the frozen density profiles in Fig. 8(a).

B. Internal randomness and entanglement

So far, we have only distinguished between typical states,

which are completely random, and untypical states, where the

coefficients ck are all equal. At this point, we also analyze

the role of the amount of internal randomness. Moreover,

we are interested in the influence of this randomness on the

entanglement of our nonequilibrium states.

In order to measure the entanglement entropy [8] (EE) of a

given state |ψ〉, we divide our system into a left part A and a

right part B of equal size. Accordingly, we write |ψ〉 as

|ψ〉 =
dA∑

i=1

dB∑

j=1

ψi,j |i〉 ⊗ |j 〉 , (36)

where dA, dB are the Hilbert-space dimensions of A, B and

{|i〉}, {|j 〉} are orthonormal product bases of A, B. The reduced
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number of random coefficients ck for a chain with L = 24 sites.

(b) Corresponding entanglement entropy S(t) for a system with

L = 16 sites. In both cases, we have � = �′ = 1.5.

density matrix ρA of part A is then given by

ρA = TrB |ψ〉 〈ψ | , (37)

where the states |j 〉 from part B are traced out,

〈i|ρA|i ′〉 =
dB∑

j=1

ψi,j ψ∗
i ′,j . (38)

By construction, the reduced density matrix ρA has dA eigen-

values ωα with
∑

α ωα = 1. These eigenvalues are then used

to compute the EE, which is defined as

S = −Tr[ρA log2 ρA] = −
dA∑

α=1

ωα log2 ωα. (39)

Before we discuss the EE below, the LDOS P (E) is depicted

in Figs. 10(a) and 10(b) for states where the percentage of

random coefficients ck is varied between 0% and 100%. As be-

fore, L = 24 sites are sufficient. First, one observes that P (E)

becomes continuously broader for increasing randomness. In

fact, for approximately 60% random coefficients, P (E) already

has a pronounced Gaussian shape and is almost identical to the

LDOS of a completely random state or the DOS �(E) of the

Hamiltonian.

In Fig. 10(b), the corresponding EE is now depicted for

L = 16 sites, as obtained from ED. One observes that S(t)

monotonically increases at short times, until it eventually turns

into a plateau with S(t) ≈ const. Moreover, this saturation

value increases with the number of random coefficients ck [90].

For an untypical state, where all ck are the same, we see that

S(0) = 0, which confirms that |ψ〉 can be written as a product

state [cf. Eq. (7)].

Comparing Figs. 10(a) and 10(b), it is evident that for our

nonequilibrium states either a broad LDOS and high EE or a

narrow LDOS and low EE occur simultaneously. Thus, low

EE could be another explanation for the dynamics observed

in Fig. 8. This possibility is examined below. Note that the

anisotropies in Fig. 10 have been set to � = �′ = 1.5. We

have checked, however, that the qualitative behavior of P (E)

and S(t) is independent of the specific choice of � and �′ and

system size L.

C. Random product state

As a final test to what extend internal randomness, entan-

glement, and LDOS influence the real-time dynamics of our

initial states, we now define a convenient state

|ψP 〉 =
∑

ij

cij |i〉 ⊗ |↑〉 ⊗ |j 〉 , (40)

where cij = cicj are complex coefficients and the sum runs

over all states |i〉 and |j 〉 of the left and right half of the chain,

respectively. By construction, |ψP 〉 is a product state and the

initial density profile is identical to the class of states defined

in Eq. (6). Concerning the internal randomness, however, the

construction of |ψP 〉 only involves ∼2L/2 random numbers,

which is considerably less compared to a typical state with 2L

independent random coefficients.

In Fig. 11(a), the density profiles pl(t) of a typical state and

a state |ψP 〉 according to Eq. (40) are depicted for fixed times

tJ = 5 and 10. We restrict ourselves to the integrable case

with � = 1.5, �′ = 0, and L = 26 sites. In order to minimize

the dependence on the specific random initialization, the data

for |ψP 〉 is averaged over N = 20 different initial states. Note,

however, that the total amount of random coefficients, ∼20 ·
2L/2, is still much smaller than 2L. The semilogarithmic plot

in Fig. 11(a) illustrates that the differences between a typical

state and |ψP 〉 are hardly visible for all times shown here.

In Fig. 11(b), the corresponding LDOS of both states is

shown. One observes that |ψP 〉 has a broad spectral distribution

with a Gaussian shape which very close to the LDOS of the

typical state. In Fig. 11(c), we also show the entanglement

entropy of both states. At t = 0, S(t) vanishes for |ψP 〉 by

construction. However, at longer times, S(t) saturates at the

same value as the typical state. These results suggest that the

lack of initial entanglement is not the origin of the untypical

dynamics observed in Fig. 8.

VII. CONCLUSION

To summarize, we have investigated the real-time broaden-

ing of nonequilibrium density profiles and, in particular, the

role of the specific initial-state realization in nonintegrable

systems. To this end, we have focused on a particular class

of initial states. This class consists of pure states and features

initial density profiles with a pronounced peak on top of a

homogeneous many-particle background at any temperature.

As a first step, however, we have concentrated on the limit

of high temperatures. Since this particular class of initial

states allows for changing internal degrees of freedom without

modifying the initial density profile, a central question has

been whether and in how far such internal details influence
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state [see Eq. (6)] and a product state |ψP 〉 [see Eq. (40)] at fixed times

tJ = 5 and 10. (b) Local density of states P (E) of these states for

a chain with L = 24 sites. (c) Corresponding entanglement entropy

S(t) for a system with L = 16 sites. In all cases, we have � = 1.5

and �′ = 0.

the real-time and real-space dynamics. In this context, the

typicality of pure states is a useful concept and implies for

internal randomness a dynamical behavior in agreement with

the equilibrium correlation function. Still, this concept does

not predict the type of transport as such and cannot be applied

to initial states without any randomness. In particular, it cannot

answer whether and for which initial conditions diffusion

occurs in isolated systems.

As an example of a nonintegrable system, we have studied

the XXZ spin-1/2 chain, where integrability is broken due to a

next-nearest neighbor interaction. Using large-scale numerical

simulations, we have first unveiled that random initial states

yield diffusive broadening in the regime of strong interactions.

Quite remarkably, in this regime, we have found that signatures

of diffusion are equally pronounced for the nonintegrable and

integrable model. Our numerical simulations in real space, as

well as a Fourier analysis, have further shown the existence

of diffusion for weaker interactions, as long as integrability is

broken.

Finally, since we have observed that nonrandom states

can lead to entirely different behavior, we have characterized

typical and untypical states in terms of the amount of internal

randomness, the local density of states, and the entanglement

entropy. Here, our numerical results have suggested that dif-

ferent initial conditions lead to the same dynamical behavior if

their local density of states is similar. The initial entanglement

entropy, on the other hand, does not seem to be a crucial

property. The latter we have demonstrated for a random product

state.

Promising future research directions include the study of

real-time dynamics of typical and untypical states in a wider

class of nonintegrable systems, e.g., in extended Hubbard mod-

els or spin models with disorder, also at lower temperatures.

In addition to transport of spin and charge, it would also be

interesting to investigate the energy dynamics as well.
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APPENDIX A: INFLUENCE OF INITIAL PEAK HEIGHT

In the main text, we have focused on initial states |ψ(0)〉
with the maximum amplitude pL/2(0) = 1 possible. For com-

pleteness, let us also discuss here whether or not the nonequilib-

rium dynamics depends on this particular choice. By choosing

a > 0 in the definition of our initial states [see Eq. (6)], it is

possible to construct states with pL/2(0) < 1, which are in this

sense closer to equilibrium. Note that pl �=L/2(0) = peq = 1/2

is unaffected by a > 0.

First, it is instructive to show how the size of the initial peak

pL/2(0) in the middle of the chain is controlled by the parameter

a. To this end, the following calculation can be performed:

〈ψ | nL/2 |ψ〉
〈ψ |ψ〉

=
〈(nL/2 − a)�| nL/2 |(nL/2 − a)�〉

〈(nL/2 − a)�|(nL/2 − a)�〉
(A1)

=
〈�| (nL/2 − a)nL/2(nL/2 − a) |�〉

〈�| (nL/2 − a)(nL/2 − a) |�〉
(A2)

=
(1 − a)2 〈�| nL/2 |�〉

(1 − 2a) 〈�| nL/2 |�〉 + a2 〈�|�〉
. (A3)

In the last step, we have multiplied out brackets and used the

projection property n3
L/2 = n2

L/2 = nL/2. Since 〈�| nL/2 |�〉 =
〈�|�〉 /2, one therefore finds that pL/2(0) does not depend

linearly on a but rather follows

pL/2(0) =
〈ψ | nL/2 |ψ〉

〈ψ |ψ〉
=

(1 − a)2

(1 − a)2 + a2
. (A4)

It follows that for a = 0, we have pL/2(0) = 1, whereas for

a = 0.5, we have pL/2(0) = peq = 0.5.

We now present the simulation results. Here, we focus on

the case of untypical states, i.e., all ck are equal, and compare

the dynamics of a state with pL/2(0) = 1 and a state with

pL/2(0) = 0.6. In Fig. 12, the resulting density profiles pl(t)

are shown for L = 26 and different anisotropies � and �′, at

fixed times tJ = 5 and 10. For a meaningful comparison, the

data for pL/2(0) = 0.6 are multiplied [92] by an overall scaling

factor 5. Remarkably, after this simple renormalization, the
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FIG. 12. Density profile pl(t) for untypical initial states with

pL/2(0) = 1 and pL/2(0) = 0.6 at fixed times tJ = 5 (filled symbols),

tJ = 10 (open symbols) for a chain with L = 26 sites and different

anisotropies: (a) � = 1.5, �′ = 0 and (b) � = 1.5, �′ = 1.5. For a

meaningful comparison, the data for pL/2(0) = 0.6 is multiplied by a

factor 5.

data for pL/2(0) = 1 and pL/2(0) = 0.6 exactly coincide with

each other.

This illustrates that for an untypical state the dynamics of

pl(t) is independent of the specific initial value pL/2(0). In

particular, by changing the parameter a > 0, it is not possible

to change the dynamical behavior of untypical states depicted

in Fig. 8 in the main text of this paper. Although not shown

here explicitly, we have found that this independence of the

parameter a applies to typical states as well. Note that this

independence can be also understood analytically for the so-

called binary operators [93].

Finally, let us comment on the influence of a > 0 on

the LDOS P (E). In Fig. 13, we show P (E) for typical

as well as untypical initial states and compare the case of

maximum amplitude pL/2(0) = 1 to the case of pL/2(0) = 0.6.

One observes that, although the spectral weight is slightly

redistributed compared to the case of a = 0, P (E) is almost

unaffected by a nonzero parameter a > 0. Thus, irrespective

of the initial amplitude pL/2(0), a typical state has a broad

Gaussian LDOS, whereas an untypical state goes along with a

narrow LDOS at the upper border of the spectrum.

0

0.2

0.4

−10 −5 0 5

∆ = 1.5 ∆′ = 0

×1
2

−10 −5 0 5 10

∆ = 1.5 ∆′ = 1.5
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(E

)

E/J

pL/2(0) = 1
pL/2(0) = 0.6

E/J

pL/2(0) = 1
pL/2(0) = 0.6

FIG. 13. Local density of states P (E) for typical and untypical

states with pL/2(0) = 1 (solid lines) and pL/2(0) = 0.6 (dashed lines).

We use L = 24 in both cases. The other parameters are (a) � = 1.5,

�′ = 0 and (b) � = �′ = 1.5.
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J
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k = 2

tJ

k = 1
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FIG. 14. Generalized diffusion coefficient Dq (t), obtained from

the nonequilibrium density profiles according to Eq. (21) for momenta

q/(2π/L) = k, L = 36. As a comparison, Dq=0(t) according to LRT

is shown for L = 33. Moreover, we also depict data obtained by

perturbation theory (PT) [80]. The other parameters are (a) � = 0.5,

�′ = 0 and (b) � = 0.5, �′ = 0.5.

APPENDIX B: DYNAMICS FOR SMALL ANISOTROPIES

In the main part of this paper, we found that the nonequilib-

rium dynamics of of pl(t) is diffusive in the regime of strong

anisotropies � and �′, irrespective of the model being inte-

grable or nonintegrable. Furthermore, we argued that diffusion

also emerges for smaller anisotropies, as long as integrability

is broken, i.e., �′ > 0.

Let us briefly comment on the regime of small interactions

�,�′ < 1. In Fig. 14, the generalized diffusion coefficient

Dq(t), as obtained from the nonequilibrium dynamics, is

shown for momenta k = q/(2π/L) = 1, 2 and anisotropies

� = 0.5, �′ = 0 as well as � = 0.5, �′ = 0.5. For compar-

ison, we also depict the diffusion coefficient Dq=0(t), i.e.,

calculated from LRT. Concerning the nonintegrable model in

Fig. 14(b) we observe that for q = 0, D(t) eventually reaches

a constant plateau at times tJ ∼ 20. However, we are unable

to find such a time-independent regime for any q �= 0. Never-

theless, we argue that these results by no means rule out the

possibility of diffusion. In fact, it turns out that in this parameter

regime, the mean free time as well as the corresponding mean

free path, are too long to draw reliable conclusions. Thus,

although our data provide no clear evidence, they strongly

suggest the emergence of diffusion in the thermodynamic limit

also in the regime of weak interactions, as long as �′ > 0.

This conclusion is further supported by the comparison with

the integrable case, as shown in Fig. 14(a). Here, transport is

clearly ballistic, D(t) ∝ t , and at least for k = 0 and k = 1,

there are distinct differences between the integrable and the

nonintegrable model.

APPENDIX C: AVERAGING OVER INITIAL STATES

We briefly discuss the accuracy of our pure-state approach.

For a typical initial state, the real and imaginary part of

the coefficients ck are drawn randomly from a Gaussian

distribution with zero mean. Therefore the resulting dynamics

naturally depends on the specific realization of these random

numbers. In order to reduce this dependence, we may average

over N > 1 different initializations.
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FIG. 15. Density profile pl(t) with respect to site l at fixed times

tJ = 5, 10 for the integrable case � = 1.5, �′ = 0 and system size

L = 26, shown in a semilogarithmic plot. Data for the N = 1 random

state are compared to data averaged over N = 5 random states.

In Fig. 15, the density profile pl(t) is depicted for fixed

times tJ = 5 and 10 for a chain with L = 26 sites and

anisotropies � = 1.5, �′ = 0. Data for N = 1 random state

are compared to data obtained by averaging over N = 5

random configurations. While the Gaussian shape is already

visible for N = 1, deviations from this Gaussian form at the

boundaries are slightly reduced for the averaged data. However,

these differences are very small and do not influence the general

result. It is therefore sufficient to only consider N = 1, as done

throughout the main text of this paper. We note that, according

to typicality, errors decrease exponentially with increasing

system size such that averaging becomes even less important

for our large systems with L = 36 sites.

APPENDIX D: FORWARD PROPAGATION IN REAL TIME

In order to perform a forward propagation of pure states

in real time, we employ two different methods, i.e., a fourth-

order Runge-Kutta (RK4) scheme for medium systems (L �

26) as well as a Trotter product formula for large systems

(L > 26). Here, we briefly summarize the working principle

of both methods.

The time-dependent Schrödinger equation reads

i∂t |ψ(t)〉 = H |ψ(t)〉 , (D1)

where h̄ = 1 is set to unity. It is formally solved by

|ψ(t ′)〉 = U (t,t ′) |ψ(t)〉 , (D2)

with U (t,t ′) = e−iH(t ′−t). While the exact evaluation of

Eq. (D2) requires diagonalization of H, we here use accurate

approximations of the time-evolution operator U (t,t ′).
Within the RK4 method, the Schrödinger equation is itera-

tively solved according to

|ψ(t + δt)〉 = |ψ(t)〉 + |ψ1〉 + |ψ2〉 + |ψ3〉 + |ψ4〉 , (D3)

where the |ψk〉 are computed as follows: |ψk〉 =
(−iH)kδtk |ψ(t)〉 /k!. In order to ensure small numerical

errors, we use a short time step δtJ = 0.01 ≪ 1 [57,60,76].

Concerning the Trotter product-formula, we use a second-

order approximation of the time-evolution operator U (t,t +
δt) = U (δt), given by

Ũ2(δt) = e−i δt
2
Hk · · · e−i δt

2
H1e−i δt

2
H1 · · · e−i δt

2
Hk , (D4)

whereH = H1 + · · · + Hk . The approximation is bounded by

||U (δt) − Ũ2(δt)|| ≪ c2 δt3 , (D5)

where c2 is a positive constant.

In practice, we use an XYZ decomposition for the Hamil-

tonian according to the x, y, and z components of the spin

operators, i.e., H = Hx + Hy + Hz. The computational basis

states are eigenstates of the Sz operators. Thus, in this represen-

tation, e−iδtHz is diagonal by construction, and it only changes

the input state by altering the phase of each of the basis vectors.

By an efficient basis rotation into the eigenstates of the Sx or

Sy operators, the operators e−iδtHx and e−iδtHy act as e−iδtHz .

APPENDIX E: CALCULATION OF DOS AND LDOS

As discussed in the main part of this paper, it is possible to

compute the (local) density of states by exact diagonalization.

In this paper, however, we have relied on an alternative

numerical approach to the DOS and LDOS [88,89]. Again,

we exploit the forward propagation of pure states in real time.

The DOS can be written as

�(E) =
∑

n

δ(E − En), (E1)

=
1

2π

∫ ∞

−∞
eitE Tr[e−iHt ] dt, (E2)

where we have used the definition of the δ function. According

to the principle of typicality, the trace in Eq. (E1) can be

evaluated by

Tr[e−iHt ] ≈ 〈�(0)| e−iHt |�(0)〉 = 〈�(0)|�(t)〉 , (E3)

with a randomly drawn state |�〉. Consequently, the DOS can

approximately be written as

�(E) ≈ C

∫ +�

−�

eitE 〈�(0)|�(t)〉 dt, (E4)

with 〈�(0)|�(−t)〉 = 〈�(0)|�(t)〉∗ and some normalization

constant C. The energy resolution is given by �E = π/�.

Similarly, it is possible to define the LDOS P (E) of a state |ψ〉
according to

P (E) =
∑

n

| 〈n|ψ〉 |2 δ(E − En) (E5)

=
1

2π

∫ ∞

−∞
eitE 〈ψ | e−itH |ψ〉 dt (E6)

≈ C

∫ +�

−�

eitE 〈ψ | e−itH |ψ〉 dt. (E7)

Note that the concept of typicality is not needed in Eqs. (E6)

and (E7).

Since the above Fourier transforms of, e.g., 〈ψ |ψ(t)〉
formally require a signal from t = −∞ to t = ∞, the ap-

proximation by Eq. (E7) with finite times � < ∞ might lead

to certain complications. This is in particular the case if the

spectral representation of |ψ〉 is very sparse, i.e., if many

coefficients | 〈n|ψ〉 |2 are zero. Then, the function 〈ψ |ψ(t)〉
does not necessarily decay, but can rather exhibit strong, almost

periodic oscillations. As a consequence, the finite-time Fourier

transform of such a signal is usually no smooth function,

especially in the case of a high-frequency resolution, i.e., in

the case of large cutoff time �.
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A common approach to account at least partially for this

problem is the convolution of 〈ψ |ψ(t)〉 with a suitable window

function. This window function, e.g., a Gaussian, introduces

a damping of 〈ψ |ψ(t)〉 at long times and thus leads to a well-

behaved Fourier transform. In the present paper, however, we

refrain from using any kind of such artificial line broadening.

In cases where 〈ψ |ψ(t)〉 is not decaying on a reasonable

time scale, we simply restrict ourselves to short cutoff times

�J ≈ 20, giving rise to a coarse energy resolution of about

δE/J ≈ 0.15. The resulting Fourier transform therefore does

not necessarily produce the exact LDOS, but rather shows

the general shape of P (E). Since our aim is only to make

qualitative statements about the basic behavior of P (E), this

procedure is adequate.
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