000850133 001__ 850133
000850133 005__ 20240708132832.0
000850133 037__ $$aFZJ-2018-04211
000850133 041__ $$aEnglish
000850133 1001_ $$0P:(DE-HGF)0$$aSteil, Marlu Cesar$$b0$$eCorresponding author
000850133 1112_ $$aInternational Conference on Ceramics$$cFoz do Iguaçu$$d2018-06-17 - 2018-06-21$$gICC 7$$wBrazil
000850133 245__ $$aGradual Internal Reforming process: development of catalyst layer for Solid Oxide Fuel Cells operating with methane and bioethanol
000850133 260__ $$c2018
000850133 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1536674571_26060
000850133 3367_ $$033$$2EndNote$$aConference Paper
000850133 3367_ $$2BibTeX$$aINPROCEEDINGS
000850133 3367_ $$2DRIVER$$aconferenceObject
000850133 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000850133 3367_ $$2ORCID$$aOTHER
000850133 520__ $$aIn the gradual internal reforming (GIR) process, the water released by the electrochemical oxidation of hydrogen at the anode is used for the steam reforming of the fuel in the catalytic layer deposited over the anode of the SOFC. We have developed a highly active ceria-based catalytic layer that efficiently converts the primary fuel (ethanol or methane) into hydrogen using the electrochemically-generated steam. Ir/CGO catalyst was pretreated at 1173 K in He flow with less than 0.5 ppm O2 prior to catalytic testing. The catalyst consists of Ir nanoparticles (mean size of 4 nm in diameter) supported on the surface of sub-micron gadolinia-doped ceria particles and forms a continuous porous layer (~25 μm thick) over the Ni-based anode. An anode-supported solid oxide fuel cell (SOFC) was continuously operated for more than 300 hours with direct methane or (anhydrous) ethanol, with a high current density. The catalytic layer associated with the GIR process avoids the carbon deposition on the anode material surface. Such results represent a significant advance towards the development of fuel-flexible SOFC operating with methane or ethanol.
000850133 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000850133 7001_ $$0P:(DE-HGF)0$$aGeorges, Samuel$$b1
000850133 7001_ $$0P:(DE-HGF)0$$aGelin, Patrick$$b2
000850133 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b3$$ufzj
000850133 7001_ $$0P:(DE-HGF)0$$aFonseca, Fabio$$b4
000850133 909CO $$ooai:juser.fz-juelich.de:850133$$pVDB
000850133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b3$$kFZJ
000850133 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000850133 9141_ $$y2018
000850133 920__ $$lyes
000850133 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850133 980__ $$aabstract
000850133 980__ $$aVDB
000850133 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850133 980__ $$aUNRESTRICTED
000850133 981__ $$aI:(DE-Juel1)IMD-2-20101013