000850150 001__ 850150
000850150 005__ 20240708133110.0
000850150 0247_ $$2doi$$a10.1016/j.ijhydene.2018.12.156
000850150 0247_ $$2ISSN$$a0360-3199
000850150 0247_ $$2ISSN$$a1879-3487
000850150 0247_ $$2WOS$$aWOS:000470046500020
000850150 0247_ $$2altmetric$$aaltmetric:66628307
000850150 037__ $$aFZJ-2018-04228
000850150 082__ $$a660
000850150 1001_ $$0P:(DE-Juel1)170014$$aHeuser, Philipp$$b0$$eCorresponding author$$ufzj
000850150 245__ $$aTechno-Economic Analysis of a Potential Energy Trading Link between Patagonia and Japan Based on CO2 free Hydrogen
000850150 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000850150 3367_ $$2DRIVER$$aarticle
000850150 3367_ $$2DataCite$$aOutput Types/Journal article
000850150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1613746485_5421
000850150 3367_ $$2BibTeX$$aARTICLE
000850150 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850150 3367_ $$00$$2EndNote$$aJournal Article
000850150 520__ $$aWith regard to the Fukushima Daiichi accident in 2011 and Japan's goal to reduce CO2 emission, the Japanese government strives for an emission free “hydrogen society” in which hydrogen will be the primary energy medium. The import of hydrogen generated by means of CO2 free wind electricity from overseas can be a promising option for Japan's prospective energy supply. Besides different other factors like specific costs of electrolyzers and hydrogen shipment over long distances, the economically reasonable export of hydrogen based on renewable energy requires low levelized costs of electricity. Within the scope of this study, the underlying idea of a hydrogen supply chain is taken up and revisited by means of a spatially highly resolved wind energy potential analysis and a detailed investigation of the supply chain elements between Patagonia and Japan.Our analysis reveals that approximately 25% of the total land area in Patagonia would be eligible. Approx. 33,000 turbines with a minimum number of 4500 full-load hours with an overall capacity of about 115 GW can be positioned. Taking into consideration the related average number of 4750 full-load hours and an electrolysis efficiency of 0.7, this leads to a potential production of about 11.5 million tons/year of hydrogen. So the wind power potential of Patagonia would theoretically be sufficient for the assumed Japanese hydrogen demand of 8.83 million tons/year. The total hydrogen pretax cost would amount to approx. 4.40 €/kgH2 at a liquid state at the harbor of Yokohama. Hence, the final specific costs of hydrogen in Japan depend on the expansion of wind power in Patagonia and therefore hydrogen based on wind energy can be cost-competitive to conventional fuels.
000850150 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000850150 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000850150 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie Sytem 2050 (ES2050)$$cES2050$$x2
000850150 588__ $$aDataset connected to CrossRef
000850150 7001_ $$0P:(DE-Juel1)169156$$aRyberg, Severin David$$b1$$ufzj
000850150 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b2$$ufzj
000850150 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b3$$ufzj
000850150 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
000850150 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.12.156$$gp. S0360319918341582$$n25$$p12733-12747$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000850150 909CO $$ooai:juser.fz-juelich.de:850150$$pVDB
000850150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170014$$aForschungszentrum Jülich$$b0$$kFZJ
000850150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169156$$aForschungszentrum Jülich$$b1$$kFZJ
000850150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b2$$kFZJ
000850150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b3$$kFZJ
000850150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000850150 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000850150 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000850150 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000850150 9141_ $$y2019
000850150 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000850150 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850150 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850150 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850150 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850150 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850150 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850150 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850150 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850150 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850150 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000850150 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850150 920__ $$lyes
000850150 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000850150 980__ $$ajournal
000850150 980__ $$aVDB
000850150 980__ $$aI:(DE-Juel1)IEK-3-20101013
000850150 980__ $$aUNRESTRICTED
000850150 981__ $$aI:(DE-Juel1)ICE-2-20101013