001     850150
005     20240708133110.0
024 7 _ |a 10.1016/j.ijhydene.2018.12.156
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000470046500020
|2 WOS
024 7 _ |a altmetric:66628307
|2 altmetric
037 _ _ |a FZJ-2018-04228
082 _ _ |a 660
100 1 _ |a Heuser, Philipp
|0 P:(DE-Juel1)170014
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Techno-Economic Analysis of a Potential Energy Trading Link between Patagonia and Japan Based on CO2 free Hydrogen
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1613746485_5421
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a With regard to the Fukushima Daiichi accident in 2011 and Japan's goal to reduce CO2 emission, the Japanese government strives for an emission free “hydrogen society” in which hydrogen will be the primary energy medium. The import of hydrogen generated by means of CO2 free wind electricity from overseas can be a promising option for Japan's prospective energy supply. Besides different other factors like specific costs of electrolyzers and hydrogen shipment over long distances, the economically reasonable export of hydrogen based on renewable energy requires low levelized costs of electricity. Within the scope of this study, the underlying idea of a hydrogen supply chain is taken up and revisited by means of a spatially highly resolved wind energy potential analysis and a detailed investigation of the supply chain elements between Patagonia and Japan.Our analysis reveals that approximately 25% of the total land area in Patagonia would be eligible. Approx. 33,000 turbines with a minimum number of 4500 full-load hours with an overall capacity of about 115 GW can be positioned. Taking into consideration the related average number of 4750 full-load hours and an electrolysis efficiency of 0.7, this leads to a potential production of about 11.5 million tons/year of hydrogen. So the wind power potential of Patagonia would theoretically be sufficient for the assumed Japanese hydrogen demand of 8.83 million tons/year. The total hydrogen pretax cost would amount to approx. 4.40 €/kgH2 at a liquid state at the harbor of Yokohama. Hence, the final specific costs of hydrogen in Japan depend on the expansion of wind power in Patagonia and therefore hydrogen based on wind energy can be cost-competitive to conventional fuels.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 1
536 _ _ |a ES2050 - Energie Sytem 2050 (ES2050)
|0 G:(DE-HGF)ES2050
|c ES2050
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ryberg, Severin David
|0 P:(DE-Juel1)169156
|b 1
|u fzj
700 1 _ |a Grube, Thomas
|0 P:(DE-Juel1)129852
|b 2
|u fzj
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 3
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 4
|u fzj
773 _ _ |a 10.1016/j.ijhydene.2018.12.156
|g p. S0360319918341582
|0 PERI:(DE-600)1484487-4
|n 25
|p 12733-12747
|t International journal of hydrogen energy
|v 44
|y 2019
|x 0360-3199
909 C O |p VDB
|o oai:juser.fz-juelich.de:850150
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169156
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21