000850190 001__ 850190 000850190 005__ 20240610121325.0 000850190 0247_ $$2doi$$a10.1039/C8SM00282G 000850190 0247_ $$2ISSN$$a1744-683X 000850190 0247_ $$2ISSN$$a1744-6848 000850190 0247_ $$2pmid$$apmid:29808191 000850190 0247_ $$2WOS$$aWOS:000434697000007 000850190 0247_ $$2altmetric$$aaltmetric:42002332 000850190 0247_ $$2Handle$$a2128/22833 000850190 037__ $$aFZJ-2018-04264 000850190 082__ $$a530 000850190 1001_ $$0P:(DE-Juel1)165624$$aDuman, Özer$$b0$$ufzj 000850190 245__ $$aCollective dynamics of self-propelled semiflexible filaments 000850190 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2018 000850190 3367_ $$2DRIVER$$aarticle 000850190 3367_ $$2DataCite$$aOutput Types/Journal article 000850190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552414088_13873 000850190 3367_ $$2BibTeX$$aARTICLE 000850190 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000850190 3367_ $$00$$2EndNote$$aJournal Article 000850190 520__ $$aThe collective behavior of active semiflexible filaments is studied with a model of tangentially driven self-propelled worm-like chains. The combination of excluded-volume interactions and self-propulsion leads to several distinct dynamic phases as a function of bending rigidity, activity, and aspect ratio of individual filaments. We consider first the case of intermediate filament density. For high-aspect-ratio filaments, we identify a transition with increasing propulsion from a state of free-swimming filaments to a state of spiraled filaments with nearly frozen translational motion. For lower aspect ratios, this gas-of-spirals phase is suppressed with growing density due to filament collisions; instead, filaments form clusters similar to self-propelled rods. As activity increases, finite bending rigidity strongly effects the dynamics and phase behavior. Flexible filaments form small and transient clusters, while stiffer filaments organize into giant clusters, similarly to self-propelled rods, but with a reentrant phase behavior from giant to smaller clusters as activity becomes large enough to bend the filaments. For high filament densities, we identify a nearly frozen jamming state at low activities, a nematic laning state at intermediate activities, and an active-turbulence state at high activities. The latter state is characterized by a power-law decay of the energy spectrum as a function of wave number. The resulting phase diagrams encapsulate tunable non-equilibrium steady states that can be used in the organization of living matter. 000850190 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0 000850190 536__ $$0G:(DE-Juel1)jiff26_20110501$$aHydrodynamics of Active Biological Systems (jiff26_20110501)$$cjiff26_20110501$$fHydrodynamics of Active Biological Systems$$x1 000850190 588__ $$aDataset connected to CrossRef 000850190 7001_ $$0P:(DE-HGF)0$$aIsele-Holder, Rolf E.$$b1 000850190 7001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b2 000850190 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b3$$eCorresponding author 000850190 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C8SM00282G$$gVol. 14, no. 22, p. 4483 - 4494$$n22$$p4483 - 4494$$tSoft matter$$v14$$x1744-6848$$y2018 000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.pdf$$yRestricted 000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.gif?subformat=icon$$xicon$$yRestricted 000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.jpg?subformat=icon-180$$xicon-180$$yRestricted 000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.jpg?subformat=icon-640$$xicon-640$$yRestricted 000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/1802.07480.pdf$$yOpenAccess 000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/1802.07480.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000850190 909CO $$ooai:juser.fz-juelich.de:850190$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000850190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165624$$aForschungszentrum Jülich$$b0$$kFZJ 000850190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b2$$kFZJ 000850190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b3$$kFZJ 000850190 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0 000850190 9141_ $$y2018 000850190 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000850190 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000850190 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2015 000850190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000850190 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000850190 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000850190 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000850190 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000850190 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000850190 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000850190 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000850190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000850190 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0 000850190 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1 000850190 9801_ $$aFullTexts 000850190 980__ $$ajournal 000850190 980__ $$aVDB 000850190 980__ $$aUNRESTRICTED 000850190 980__ $$aI:(DE-Juel1)ICS-2-20110106 000850190 980__ $$aI:(DE-82)080012_20140620 000850190 981__ $$aI:(DE-Juel1)IBI-5-20200312 000850190 981__ $$aI:(DE-Juel1)IAS-2-20090406