000850190 001__ 850190
000850190 005__ 20240610121325.0
000850190 0247_ $$2doi$$a10.1039/C8SM00282G
000850190 0247_ $$2ISSN$$a1744-683X
000850190 0247_ $$2ISSN$$a1744-6848
000850190 0247_ $$2pmid$$apmid:29808191
000850190 0247_ $$2WOS$$aWOS:000434697000007
000850190 0247_ $$2altmetric$$aaltmetric:42002332
000850190 0247_ $$2Handle$$a2128/22833
000850190 037__ $$aFZJ-2018-04264
000850190 082__ $$a530
000850190 1001_ $$0P:(DE-Juel1)165624$$aDuman, Özer$$b0$$ufzj
000850190 245__ $$aCollective dynamics of self-propelled semiflexible filaments
000850190 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2018
000850190 3367_ $$2DRIVER$$aarticle
000850190 3367_ $$2DataCite$$aOutput Types/Journal article
000850190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552414088_13873
000850190 3367_ $$2BibTeX$$aARTICLE
000850190 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850190 3367_ $$00$$2EndNote$$aJournal Article
000850190 520__ $$aThe collective behavior of active semiflexible filaments is studied with a model of tangentially driven self-propelled worm-like chains. The combination of excluded-volume interactions and self-propulsion leads to several distinct dynamic phases as a function of bending rigidity, activity, and aspect ratio of individual filaments. We consider first the case of intermediate filament density. For high-aspect-ratio filaments, we identify a transition with increasing propulsion from a state of free-swimming filaments to a state of spiraled filaments with nearly frozen translational motion. For lower aspect ratios, this gas-of-spirals phase is suppressed with growing density due to filament collisions; instead, filaments form clusters similar to self-propelled rods. As activity increases, finite bending rigidity strongly effects the dynamics and phase behavior. Flexible filaments form small and transient clusters, while stiffer filaments organize into giant clusters, similarly to self-propelled rods, but with a reentrant phase behavior from giant to smaller clusters as activity becomes large enough to bend the filaments. For high filament densities, we identify a nearly frozen jamming state at low activities, a nematic laning state at intermediate activities, and an active-turbulence state at high activities. The latter state is characterized by a power-law decay of the energy spectrum as a function of wave number. The resulting phase diagrams encapsulate tunable non-equilibrium steady states that can be used in the organization of living matter.
000850190 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000850190 536__ $$0G:(DE-Juel1)jiff26_20110501$$aHydrodynamics of Active Biological Systems (jiff26_20110501)$$cjiff26_20110501$$fHydrodynamics of Active Biological Systems$$x1
000850190 588__ $$aDataset connected to CrossRef
000850190 7001_ $$0P:(DE-HGF)0$$aIsele-Holder, Rolf E.$$b1
000850190 7001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b2
000850190 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b3$$eCorresponding author
000850190 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C8SM00282G$$gVol. 14, no. 22, p. 4483 - 4494$$n22$$p4483 - 4494$$tSoft matter$$v14$$x1744-6848$$y2018
000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.pdf$$yRestricted
000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.gif?subformat=icon$$xicon$$yRestricted
000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.jpg?subformat=icon-180$$xicon-180$$yRestricted
000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/c8sm00282g.jpg?subformat=icon-640$$xicon-640$$yRestricted
000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/1802.07480.pdf$$yOpenAccess
000850190 8564_ $$uhttps://juser.fz-juelich.de/record/850190/files/1802.07480.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000850190 909CO $$ooai:juser.fz-juelich.de:850190$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000850190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165624$$aForschungszentrum Jülich$$b0$$kFZJ
000850190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b2$$kFZJ
000850190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b3$$kFZJ
000850190 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000850190 9141_ $$y2018
000850190 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850190 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850190 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2015
000850190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850190 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850190 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850190 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850190 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000850190 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850190 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850190 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850190 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000850190 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000850190 9801_ $$aFullTexts
000850190 980__ $$ajournal
000850190 980__ $$aVDB
000850190 980__ $$aUNRESTRICTED
000850190 980__ $$aI:(DE-Juel1)ICS-2-20110106
000850190 980__ $$aI:(DE-82)080012_20140620
000850190 981__ $$aI:(DE-Juel1)IBI-5-20200312
000850190 981__ $$aI:(DE-Juel1)IAS-2-20090406