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Abstract

The collective behavior of active semiflexible filaments is stud-
ied with a model of tangentially driven self-propelled worm-like
chains. The combination of excluded-volume interactions and self-
propulsion leads to several distinct dynamic phases as a function of
bending rigidity, activity, and aspect ratio of individual filaments.
We consider first the case of intermediate filament density. For
high-aspect-ratio filaments, we identify a transition with increas-
ing propulsion from a state of free-swimming filaments to a state
of spiraled filaments with nearly frozen translational motion. For
lower aspect ratios, this gas-of-spirals phase is suppressed with
growing density due to filament collisions; instead, filaments form
clusters similar to self-propelled rods, as activity increases. Finite
bending rigidity strongly effects the dynamics and phase behavior.
Flexible filaments form small and transient clusters, while stiffer
filaments organize into giant clusters, similarly as self-propelled
rods, but with a reentrant phase behavior from giant to smaller
clusters as activity becomes large enough to bend the filaments.
For high filament densities, we identify a nearly frozen jamming
state at low activities, a nematic laning state at intermediate ac-
tivities, and an active-turbulence state at high activities. The latter
state is characterized by a power-law decay of the energy spectrum
as a function of wave number. The resulting phase diagrams en-
capsulate tunable non-equilibrium steady states that can be used
in the organization of living matter.

1 Introduction

Living systems often self-organize into functional structures by
consuming energy. Biopolymers and filamentous objects like actin
filaments, microtubules and slender bacteria exhibit particularly
interesting examples of self-organization,?™ ' as their extended
nature makes the collective dynamics inherently complex. Micro-
tubules display loops when gliding on motility assays of kinesin-
1 motors,%2 or on dynein-coated surfaces confined at an air-
buffer interface.l3 Likewise, large-scale vortices of microtubules
on dynein carpets emerge due to inelastic collisions. 1413 Actin fil-
aments self-organize into swirls at high densities when propelled
by immobilized heavy meromyosin molecular motors.28 Besides
these cytoskeletal filaments, other filamentous objects like slender
bacteriallZ and synthetic particles such as vibrated granular rods
are also found to self-organize into swirls. 1812 Besides the fasci-
nating physics of self-organization in active matter, understand-
ing how these structures emerge from the underlying dynamics
could shed light on their function. Cytoplasmic streaming of mi-
crotubules in the cortical arrays of plant cells provides an example,
where the organization of microtubules into a swirl provides func-
tion in furnishing cell-wall growth.2% This type of self-organization
can also play a useful role in micro- and nano-technology such as
in nanofabrication and in drug delivery.2

Theoretical studies of active, flexible filaments have investigated
different ways of invoking activity. 22730 Activity, introduced as col-
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ored noise acting tangentially on a single filament, is shown to
result in a net longitudinal drift of the filament.2!' In an ensemble
of filaments with active colored noise acting over the normal direc-
tion of the bonds, the collective dynamics is observed to become
superdiffusive with increasing levels of activity.*2 Such activity-
caused enhanced diffusion can be rationalized with effective-
temperature models.33:34

Here we study the collective behavior of self-propelled semi-
flexible filaments with a focus on self-organization and dynam-
ical pattern formation. We employ the self-propelled worm-like
chain model, introduced recently to study the dynamics of a sin-
gle semiflexible filament. 2223 The self-propulsion is introduced as
a constant magnitude force acting homogeneously in the tangen-
tial direction along the contour of the filament. The effect of self-
propulsion has been shown to differ markedly for rigid and flexible
filaments. It drives rigid filaments into a directed translational mo-
tion, where relaxation — in particular rotational diffusion — speeds
up. In contrast, when propulsion is stronger than bending rigid-
ity, filaments form spirals.%2 For a finite-density suspension, we
find that filaments cluster with increasing propulsion. Rigid fila-
ments behave almost like rods, forming large clusters at intermedi-
ate propulsion. However, as propulsion increases, flexibility starts
to play a role even for very stiff filaments and clusters break apart
into smaller and highly motile clusters. At low rigidity, filaments
coil up into a gas of isolated spirals if propulsion is sufficiently
strong, as expected from single filament dynamics. However, these
spirals can be broken up by finite density effects if aspect ratio is to
low. For a high-density suspension, we find that filaments undergo
a transition from a jammed state to a flowing state as a function
of increasing activity. At intermediate levels of activity, filaments
form nematic lanes, which break up into a active-turbulent regime
upon further increase of activity.

2 Model and methods

Our study is based on the self-propelled worm-like chain model
developed recently.22/23 A single filament is represented by Nj, + 1
beads held together by N, stiff bonds and bending potentials. The
equation of motion is given by the Langevin equation

mi = —pi; — ViU + F + FY), )

where r; are the coordinates of bead i with the dots denoting
derivatives with respect to time. m denotes the mass, and 7y the
friction coefficient of each bead. U is the potential energy, F,({'[:T is
the thermal noise force acting on particle i, FE,') is the propulsion
force, and yi¥; is the drag force.

The configurational potential
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consists of bond, bending and excluded-volume contributions. The
harmonic bond potential
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Figure 1 Snapshots of the distinct phases: (a) melt phase characterized with a homogeneous distribution of filaments performing thermal motion
(&p/L=0.1, Pe =15, a = 25), (b) gas of clusters phase characterized with formation of small and transient clusters of filaments (§,/L = 16, Pe = 1500,
a = 25), (c) giant clusters phase characterized with formation of large and persistent clusters (§,/L = 16, Pe = 15, a = 25), and (d) gas of spirals
phase characterized with weakly interacting coiled filaments performing translational diffusion (£,/L = 0.1, Pe = 10000, a = 100). Color wheel denotes
orientation of each bond. Insets in (a) and (d) show zoomed areas shaded in gray.

acts on the neighboring beads of each filament separately with j
and i denoting the filament index and the bead index of a filament,
respectively. The bond vector is defined as r; ;| =111 —r;. ks
the spring constant for the bond potential and r is the equilibrium
bond length, which is the same for all the bonds. Semiflexibility is
introduced via the bending potential,
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where « is the bending rigidity. The excluded-volume interaction
acts between the beads of a single filament and between the beads
of different filaments alike to render the filaments impenetrable. It
is modeled by a Weeks-Chandler-Anderson potential,
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where r; ; =r; —r; is the vector between the positions of the beads
i and j (which may belong to the same or different filaments). &
and o are the characteristic volume-exclusion energy and effective
filament diameter, respectively.

Self-propulsion is introduced as a constant magnitude force act-

ing along each bond of a filament tangentially, i.e., F<pi> = fpliit1-

This force is distributed equally among both adjacent beads consti-

tuting the bond. The thermal force F,(C')T is modeled as white noise
with zero mean and variance 2k3TyfAt, to fulfill the fluctuation-
dissipation theorem. The parameter choice is done such that (i) &
is sufficiently large to render the bond length essentially constant
at rg, and (ii) the local filament curvature low such that the bead
discretization does not violate the worm-like chain description.'z_z|
When the aforementioned conditions are met, the dynamics of a
single filament is described by two dimensionless numbers,

K
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where L = N,ry is the filament length (with N, denoting the num-
ber of bonds of a filament) and &, is the persistence length of the
chain. The Peclet number Pe is the ratio between advective and
diffusive transport, thereby providing a measure for the strength
of self-propulsion. Two other parameters related to the size of the
filament can also play a role. The aspect ratio a = L/o is the
ratio of the length of the filament to the effective diameter of a
bead. Furthermore, the smoothness of the filament, measured by
the degree of overlap of neighbouring beads o /ry, determines an
effective friction between different segments in close contact.
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Figure 2 Phase diagram as a function of §,/L and Pe. Symbols encode
the distinct phases. Cyan triangles display the melt phase, magenta circles
are the gas of clusters phase and the red squares are the giant clusters
phase. The background colors are guides to the eye. Phases are identified
with the average cluster size. Points with an average cluster size smaller
than 10 filaments are marked as the melt phase, while those larger than
200 filaments are marked as the giant clusters, with everything in between
falling into the category of gas of clusters. Green filled symbols depict
the simulations with high aspect ratio filaments (at a = 100, while every
other points denote simulations with @« = 25). The only different phase for
high aspect ratio filaments is the gas-of-spirals phase, which is depicted
with stars with every other symbol remaining the same as before. The
black dashed line indicates that the phase boundary between the giant
clusters and gas of clusters phases is well described by the linear relation
&p/L ~ Pe, i.e. flexure number § =~ 100.

The contour velocity of a filament is given by v = f,, /¥, and the
translational diffusion coefficient D; = kgT /L. The friction coef-
ficient per unit length is given with y; = y(N, +1)/L. The flexure

number 3
L
§=PeL/& = pr
is the ratio between activity and bending rigidity.
The results are presented in dimensionless units, with length
measured in units of the filament length L, energies in units of the
thermal energy kgT, and time in units of the self-diffusion time 7p
for the filament to diffuse its own body length (diffusive time) or
the self-advection time 74 for the filament to propel itself along its
own body length (advective time), with

)

tp = L3y, /4kpT, (10)
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Equations of motion are integrated with the Verlet algorithm us-
ing LAMMPS 3¢ The usage of Verlet integration instead of Euler in-
tegration allows for a larger timestep and therefore provides faster
computations. m and y are chosen such that the dynamics is close
to overdamped dynamics (m/y = 1.2 x 10~71p). To ensure that
inertial effects are negligible for the presented results, we rerun
some of the simulations at different values of friction coefficient
and observe the same behavior.

Unless otherwise stated, we use k; = 5000kpT / Gg, ro=0/2=
L/Ny, and € = kgT. We consider a square box of lengths L, =L, =
8660 with periodic boundary conditions. We define the packing
fraction as ¢ = N,Nyoro/LcLy. N, denotes the number of bonds
making up a single filament, Ny the number of filaments. We use

Ny = 6000 for low aspect ratio filaments (a = 25) and Ny = 2000
for high aspect ratio filaments (¢« = 100) with ¢ =0.2 and ¢ = 0.8.
The parameter space is explored via changing N, f), and « to vary
the aspect ratio a, Peclet number Pe and the thermal persistence
length &p /L, respectively.

3 Results

The collective dynamics of self-propelled semiflexible filaments is
dictated by the dynamics of intra- and inter-filament collisions,
which are in turn dependent on the properties of a single filament.
The dynamical behavior of a single filament is determined by its
thermal persistence length &, /L, Peclet number Pe and aspect ratio
a.%2 Athigh &, /L, the active forces drive the filament along its con-
tour leading to directed translational motion. However, increasing
activity also increases the flexure number, i.e. the activity becomes
able to deform the filaments. At high aspect ratio, filaments spon-
taneously form spirals in this regime of high Pe combined with low
&,/L.22 We distinguish four distinct phases in the collective dy-
namics at finite filament concentration (see Fig.[I)). The region of
stability of each of these non-equilibrium phases is depicted in the
phase diagram in Fig.[2| Atlow &,/L and Pe, the ensemble behaves
like a passive homogeneous melt (Fig. [I}a). Increasing Pe leads to
the formation of clusters. Clusters of low &,/L filaments are tran-
sient and small (Fig. b), while clusters of high &, /L filaments are
large, persistent and rotating (Fig. [I}c and Movie M2 in the ESI).
However, we find that cluster sizes do not monotonically grow in
Pe, but instead peak at moderate propulsion strengths (see Movie
M3 in the ESI).

3.1 Spiral Formation

Isolated filaments wind up in spirals at strong propulsion and low
rigidities. Spiral formation is facilitated by self-interactions. It is
initiated by the head of the filament colliding with a subsequent
part of its body. As such, the probability of spiral formation de-
pends on activity and persistence length. However, once the spirals
are formed, their stability is altered by aspect ratio. Filaments wind
up over themselves more with increasing aspect ratio. Therefore,
spirals of higher aspect ratio filaments are harder to break apart.
This role of aspect ratio becomes crucial for the collective dynam-
ics.

We begin our analysis with the dynamics of high-aspect-ratio
filaments. To elucidate spiral formation and spiral structure, we
calculate the spiral number

j= § 8D -6,0)
= 2Ny

(12)

where 6;(1) is the bond orientation at position / along the contour
of the filament. It is a quantitative measure of the number of times
the filament has wrapped around its head bead.

For filaments with low propulsion and low rigidity (at £,/L =
0.1, Pe = 150), the probability distribution of the absolute value
of the spiral number resembles a Gaussian distribution cut in half
(see Fig. a). With increasing rigidity (at §,/L = 16, Pe = 150),
the distribution becomes exponential and develops a small peak
around |s| ~ 1. Stiff filaments are bent into circles (corresponding
to |s| = 1) due to the stress generated by self-propulsion. However,
such circular loops are transient in dynamics, so that the peak is
small.

Strongly propelled filaments with low rigidity (at £,/L = 0.1,
Pe = 10000) self-organize into spirals of different configurations.
This results in multiple peaks in the probability distribution of |s|.
Each peak denotes a different type of spiral configuration that are
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Figure 3 (a) Probability distribution of the absolute value of the spiral number. (b-e) Distinct spiral configurations observed in the system: (b) A single
coiled filament with |s| ~ 7, (c) a filament wrapped around a coiled filament, with |s| ~ 3, (d) two intertwined filaments each with |s| ~ 5, and (e) two
filaments wrapped around a coiled filament, with |s| ~ 3 and |s| ~ 2, respectively. The color codes of filaments are consistent with the colors of the
bars around the peaks in (a). (f) Time evolution of number of filaments with approximately the given spiral numbers n,. The intervals for each |s| value

are colored with a bar around each peak of (a). The parameters are &,/L =

filaments. Aspect ratio is a = 100 (see also Movie M5 and M6 in the ESI).

highlighted in Fig. [3}b to e. The most pronounced peak, coincid-
ing with the most common type of spiral in the ensemble, is around
|s| &7, corresponding to a single coiled filament. When the lead-
ing tip of a filament hits a subsequent part of its own body, the
volume exclusion force bends the leading tip, thereby causing it
to wind onto itself. After the winding process, the filament stays
locked in the coiled form for an extended duration. The number
of spirals consisting of a single filament increases up to a value
close to unity in time (see Fig. f), rendering the dynamics of the
ensemble analogous to a gas of spirals. This is consistent with the
dynamics of a single filament.22

As a direct result of collective motion, there are multiple spiral
configurations corresponding to the different peaks in the distribu-
tion. The second important peak occurs at |s| ~ 3. The configu-
ration it represents is involved in two types of spirals (in double-
wrapped and triple-wrapped filament configurations in Figs. [3}c
and e). The double-wrapped filament configuration consists of a
single coiled filament with another filament wrapped around it.
Another filament can wind itself around these two filaments to
form the configuration with three filaments. The spiral number of
the third wrapping filament coincides with the first peak of the dis-
tribution. It is relatively easier to break up this state. As a result,
number of filaments with |s| ~ 2 decreases with time.

0.1,Pe = 10000. (g) Mean squared displacement of the center of mass of

Finally, the smallest peak (at |s| ~ 5) represents a configuration
with two intertwined filaments (Fig. d). Two filaments interlock
when one of them hits the other before winding itself over it. This
type of formation has the lowest probability to occur. It is also easy
for the filaments to break out of this interlock, as a free filament
can widen the tail of one of the interlocking filaments, thereby
facilitating the break-up. As a result, the observed peak around
|s] =5 is small.

In terms of dynamical behavior, spirals rotate in accordance with
their wrapping direction, with the center of mass performing ther-
mal motion. The mean square displacement (MSD) of the center of
mass of long filaments in the spiralling phase is marked by an ini-
tial ballistic behavior (~ ¢2) that makes a transition into a diffusive
behavior (~ ¢t) at late lag times (see Fig. g). The initial ballistic
regime is a result of filaments performing directed motion at early
lag times. Therefore, the transition time from ballistic to diffusive
motion gives a time scale for spiralling on average. The movement
of the filaments is significantly hindered in the spiralling regime,
despite the strong propulsion.

For lower aspect ratios, collective effects radically change the
picture. Spirals of shorter filaments (a = 25) are winded a smaller
number of times, which renders them less stable. At low concen-
tration, these filaments are in the spiraled state most of the time.



However, as density increases, collisions of uncoiled filaments with
spirals break the spirals (see Movie M5 in the ESI). Thus the av-
erage spiral number decreases with filament density (see Fig.
until spirals are almost absent at ¢ = 0.2. Instead, the filaments
form increasingly large motile clusters.

3.2 C(Cluster Formation and Disintegration

We consider two filaments as part of the same cluster if they have
closely spaced bonds that are pointing in the same direction. More
specifically, if 30% of the body of two filaments are within a dis-
tance range of 20 of each other, and point in the same direction
+m/6, then we consider the filaments to be part of the same clus-
ter. The average cluster size is then defined as (m) =Y., m(P(m,t))
with the average taken over time.
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Figure 4 The average of the absolute value of spiral number

(blue-shaded axis) and the average cluster size (red-shaded axis)
as a function of density. Density is varied by changing the
number of filaments (Ny = 100,250,500, 1000,2000,3000,6000 for ¢ =
0.003,0.009,0.017,0.034,0.068,0.102,0.204, respectively). The other pa-
rameters are fixed at £, /L = 0.1, Pe = 4300, and a = 25.

To quantify the transition into clustering, we calculate the clus-
ter mass distribution,

(13)

where n,(t) is the number of clusters of mass m present at time ¢
and Ny is the total number of filaments in the system. The distri-
bution fits a stretched exponential of the form P(m) = exp(—m/b)¢
with 5 =0.02 to 0.04 and ¢ = 0.2 to 0.4 for filaments with low rigid-
ity and low propulsion (see Fig.[5). The stretched exponential fit
points to a dynamical clustering picture where clusters of different
mass acquire and eject filaments at different characteristic rates.=Z.
With an increasing rigidity, the cluster mass distribution undergoes
a transition to a power law distribution of the form P(m) = m~¢
with d ~ 3. Additionally, the distribution has a nonmonotonically
decreasing tail with a shoulder at large mass values, indicating an
increase in the probability of finding a filament in a larger cluster.
This corresponds to the giant cluster regime in Fig. However,
as the activity is increased to Pe = 4300, the distribution turns back
to a stretched exponential with » =~ 0.07 and ¢ ~ 0.3. Remarkably,
formation of large clusters disappear with increasing activity.

To elucidate the properties of the clusters further, we calculate
the average cluster size and the average lifetime of clusters. For
the average lifetime calculation, we label the clusters in time by
comparing the identity of filaments in two successive time frames.
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Figure 5 Cluster mass distribution as a function of &,/L at Pe = 15 and
Pe = 4300 as depicted in the outer legend. Aspect ratio is fixed at a = 25.
Solid lines are fits as given in the inner legend. The values of fit parameters
are given in the text.

The clusters with maximum overlapping filaments are labelled as
the same cluster with a unique identity. A cluster is deemed to
lose its identity when its size drops down to less than 10 filaments
or when it merges with a larger cluster. The tendency of clus-
tering decreases with decreasing rigidity. However, for increasing
activity, it reaches a peak at intermediate values, after which it
starts to decrease. Therefore, both average cluster size and aver-
age cluster lifetime have distinct peaks at intermediate Pe for stiff
filaments (see Fig.[6). The maximum at intermediate activity level
corresponds to the pocket of giant clusters in the phase diagram
(Fig.[2).

The disappearance of giant clusters at high Pe is a flexibility ef-
fect, as stiff rods do not show this reentrant behavior. Two factors
contribute to cluster disappearance. Dynamics of self-propelled
filaments are sped up, leading to faster reorientation, and active
forces are deforming the filaments themselves.

The rotational diffusion coefficients can be extracted from the
average orientation of the end-to-end vector 6 of filaments. Fit-
ting the mean square rotation (MSR) of the end-to-end vector with
A62% =2D,1 yields the effective rotational diffusion coefficient D,.
As activity increases, rotational diffusion increases (see Fig. [7).
This increased rotational diffusion does not arise from the railway
motion of isolated filaments, which sets in at higher flexure num-
bers (§ > 100).22 Instead, the rotational diffusion displays also col-
lectivity effects. Filaments have a much shorter mean free path at
high Pe, which causes them to reorient very frequently by bending
upon collisions. As a result, the rotational diffusion of filaments
gets a significant activity-enhanced contribution, which destroys
large clusters.

We calculate the average end-to-end distance /(r2) to quantify
the structural properties of the filaments. The Kratky-Porod worm-
like chain model, valid for passive filaments without volume exclu-

sion, predicts®
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The end-to-end distances generally deviate from the Kratky-Porod
prediction due to the excluded-volume interactions, especially for
low rigidities. However, for a single filament, the end-to-end dis-



tance is found to agree well with the Kratky-Porod prediction at
high rigidities, si%iﬁcant deviations occur at low rigidities due to
spiral formation.“< For the collective dynamics of stiff filaments
(&, > L), we find that the end-to-end distance \/E is nearly con-
stant up to a critical flexure number § ~ 100, then starts to decrease
approximately logarithmically (Fig. [8). This behavior is consistent
with the dependence of the phase boundary of the giant-cluster
phase at higher Pe in Fig. which shows a similar linear de-
pendence. Both of these observations indicate that the reentrant
behavior in Fig. [2|is due to a balance of propulsion and curvature
forces. The giant clusters dissolve when propulsion forces (~ Pe)
become strong enough to significantly deform the filaments with
bending-induced restoring forces (~ &,/L), i.e. flexure number
§ ~ 100.
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Figure 6 (a) Average cluster mass (in terms of bead mass), and (b) av-
erage lifetime of clusters as a function of Pe. Different &,/L values are
denoted in the legend. The arrow direction indicates increasing &,/L. As-
pect ratio is a = 25.

3.3 Dynamics of Giant Clusters

Giant clusters consist of polar ordered filaments. They occur in a
part of the phase space wherein filaments are stiff (§,/L > 2) and
the propulsion force is at an intermediate value (10! < Pe < 103).
We calculate the polar order parameter of the bond vectors,

S1(w) = (D)), (15)

where j denotes the bond identities within boxes of area w?, and
the averages are taken over bonds and time. In this way, we cal-
culate the polar order locally inside square boxes and study it as a
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Figure 7 Rotational diffusion coefficients as extracted from the MSR of
the end-to-end vector of filaments as a function of flexure number § for
different £, /L as indicated in the legend. Aspect ratio is a = 25.
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Figure 8 Average end-to-end distance +/(rZ) of filaments with respect to
flexure number § for different £, /L as indicated in the legend. Solid lines
show the theoretical values from the Kratky-Porod model. Aspect ratio is
a=25.

function of box size (see Fig. E[) As filaments become stiffer at in-
termediate activity, clusters of polar ordered filaments span larger
and larger areas. The increase in polar ordering can be attributed
to the alignment of stiff filaments upon collisions with the same
mechanism as collision-induced alignment of self-propelled rigid
rods.3?

Highly polar-ordered phases of self-propelled rods are observed
to exhibit giant number fluctuations. Such fluctuations are
given by the variance of the number of particles (An? = (n2) — (n)?)
within square boxes of varying sizes. For thermal motion accom-
panied with a homogeneous density distribution, the number fluc-
tuations scale with An? ~ n, where n is the average number of par-
ticles. We observe an increase in the power @ in An ~ n® with
increasing Pe when the rigidity is high (§,/L = 16, see Fig.|10). It
increases from o = 0.5 at Pe =0 up to oo = 0.9 at Pe = 150, which
corresponds to the mid-part of the giant clusters regime. When Pe
increases further, oo decreases again all the way down to o = 0.6 at
Pe = 4375 (for comparison, a power of 0.8 is observed for rods in
the giant-cluster regime). 4941 Therefore, the giant-cluster regime
is marked with giant number fluctuations due to the density inho-
mogeneities caused by clustering.

In forming giant clusters, active semiflexible filament ensembles
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Figure 9 Polar order parameter inside square boxes with respect to differ-
ent box sizes. Colors correspond to different §,/L values as given in the
legend. Pe = 15 and a = 25 in all three curves.

behave similarly as ensembles of self-propelled rigid rods. How-
ever, even at high rigidities, flexibility plays a crucial role. One
interesting manifestation of flexibility is in the collisions of giant
clusters. For a dense system of active rigid rods, head-on collisions
of large clusters are observed to lead to an accumulation of stress
resulting in the formation of a jammed circular aggregate.*? In an
ensemble of active semiflexible filaments, on the other hand, fil-
aments, either individually or in clusters, can open up channels
inside the cluster they are hitting head on. They can bend their
way through the antagonistic cluster until they escape (See Movie
M2 in the ESI).
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Figure 10 Number fluctuations of beads in square boxes with respect to
the average number of beads inside the box. The persistence length is
fixed at £, /L = 16 and aspect ratio at a = 25, while changing Pe is given in
the legend. Power law fits are shown in the dashed lines. Giant clusters
regime is marked with black line.

10°

Another interesting aspect of giant clusters is the ease of
orientation-angle transmission between the filaments of a cluster.
When the leading portion of filaments in the front part of a cluster
change orientation, either due to a collision or thermal diffusion,
the other filaments follow suit in reorienting themselves in the new

direction and thereby they turn the entire cluster (see Movie M4
in the ESI). As a result, giant clusters are rotating frequently and
their shape is often curved and meandering (see Movie M2 in the
ESD.

3.4 Dynamics at High Densities

Filament motion becomes increasingly hindered at high densities.
At a high enough density (¢ = 0.8), even flexible filaments get
jammed due to the high energy barriers associated with structural
rearrangements (Fig. [[I}a and Movie M7 in the ESI). In the jam-
ming regime (low activity) stacks of filaments displace by small
amounts with respect to other stacks towards energetically more
favourable configurations. With increasing activity filaments over-
come the energy barriers and rearrange. In the initial stage of the
simulation, the dynamics are now dominated by the creation and
annihilation of half-integer topological defects due to the nematic
symmetry of filaments, similar to the defect behavior in active-
nematic fluids.4#42 However, for intermediate levels of activity,
we find that this defect-rich state is only transitory and relaxes
into a nematic laning regime in the steady state (Fig. [I1}b and
Movie M8 in the ESI). At high activity, active turbulence consti-
tutes the steady-state dynamics as the propulsion forces decrease
the effective persistence length, and thereby the nematic correla-
tions in motion. Thus, fully nematic lanes break up into smaller
nematic-aligned bands of moving filaments. The dynamics is then
dominated by the collisions between these nematic bands, which
results in an active turbulence phase with continuous creation and
annihilation of defects (Fig. c and Movie M9 in the ESI).

To quantify the dynamics towards turbulence at high densities,
we calculate the mean squared displacement (see Fig. [I2]for MSD
of low persistence length filaments for various activities). The
small displacements of stacks of filaments against one another in
the jamming phase results in a short-time subdiffusive regime that
becomes diffusive at late times in the jamming phase (Pe = 0.9).
With increasing activity, the dynamics become superdiffusive in
the laning regime as the filaments retain their orientational mem-
ory for extended durations (Pe = 9.0 — 24.3). At higher levels of
activity, in the active turbulence regime, filament motion becomes
diffusive again at intermediate times (Pe = 90.0).

We use the intermediate-time (as defined by the gray vertical
lines in Fig. exponent of the MSD to construct a phase dia-
gram (shown in Fig. [13). The active turbulence regime occurs at
low persistence lengths and high levels of activity (in other words,
at high flexure numbers), both of which promote lower values of
effective persistence lengths and thereby lower degrees of corre-
lated motion. Increasing effective persistence lengths (or decreas-
ing flexure number), on the other hand, promotes jamming.

To characterize the active turbulence phase further, we calcu-
late the kinetic energy spectrum, which can be obtained from the
Fourier transform of spatial velocity correlations as

E(k) = X [@Re MR VerariR),  (16)

2

in two dimensions.4®47 In the active-turbulence regime, the ki-
netic energy accumulates in the largest length scales and decreases
toward lower length scales with a power law k~% with exponent
o~ 1.2+0.1, see Fig. When normalized by the maximum
kinetic energy, all curves roughly fall on top of each other, indicat-
ing that changing activity or rigidity does not lead to a significant
change in the spectral behavior. Instead, it causes a change in the
velocity magnitude. This is somewhat similar to the previously re-
ported collapse of the spatial velocity correlations in the turbulent



Figure 11 Snapshots of high density phases at ¢ = 0.8, a =30, §,/L = 0.2 for various Pe: (a) Jamming (Pe = 0.9), (b) laning (Pe = 24.3), and (c) active
turbulence phases (Pe = 90). The color code is chosen as random to discern individual filaments.
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Figure 12 Mean-squared displacement of the center of mass of filaments
as a function of lag time at ¢ = 0.8, a =30, &,/L = 0.2 for various Pe.
The gray-dashed lines indicate slopes of 1 and 2, depicting diffusive and
ballistic motion, respectively. The gray vertical lines denote the range con-
sidered in the calculation of the slope in Fig. @

state of active nematics, when normalized by the mean-squared
velocity, 4849

4 Discussion

The extended and flexible nature of filamentous objects allows de-
formations and self-interactions. This additional degree of free-
dom enhances the importance of the behavior of individual fila-
ments in the collective dynamics. When the individual filaments
have low rigidity, filaments are bent, inhibiting their extension and
directionality of motion. The resulting ensemble is weakly inter-
acting, as embodied in the gas-like dynamics of spirals and gas
of clusters regimes. Stiff filaments, on the other hand, have ex-
tended rod-like shapes. They form larger and more persistent clus-
ters that are strongly cooperative in dynamics. Filaments inside
giant clusters not only point in the same direction, but also follow
the change in orientation of other constituent filaments. In this
way, spirals and giant clusters are results of the interplay between
the extended and flexible nature of the filaments.

The change from the spiralling state, where filament motion

a
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Figure 13 The phase diagram for ¢ = 0.8 and a = 30 in terms of £, /L and
Pe. The points denote individual simulation instances with the color code
showing the exponent of MSD at intermediate times as depicted in Fig.

3

is constrained, to the clustering state, where filaments move in
groups in an aligned fashion, represents dramatically different
routes as to how propulsion force induces structure formation. In
the clustering state, the propulsion force driving the system out
of equilibrium is used for the movement of filaments whereas, in
the spiralling case, it is used for shape change to sustain a slowed-
down steady state. It is indeed peculiar for an active system to
turn inactive by a shape change without the involvement of an ex-
ternal cue. Actin filaments and microtubules in motility assays are
found to exhibit this type of frozen steady state notwithstanding
their activity>?

Activity enhances the ability of filaments to explore the rich con-
figurational space provided by flexibility and aspect ratio. There-
fore, the resultant phase space displays a spectrum of phases that
mimic the behavior of other non-equilibrium systems. In the
gas-of-spirals phase, filaments effectively perform thermal motion
analogous to an ensemble of passive point particles. In the gas-of-
clusters regime, on the other hand, filaments organize in small and
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Figure 14 Kinetic energy spectrum E(k), normalized by its maximum value
Emax as a function of wavenumbers, normalized by the wavenumber cor-
responding to the filament length, k;, = 2xn/L. The fit is a power law with
exponent —1.2+ 1. The gray vertical line indicates half the simulation box
length, corresponding to the largest length scale of the system.

short-lived clusters, reminiscent of the dynamical clusters observed
for self-propelled point particles.3>*>152! Stiff filaments behave like
self-propelled rigid rods in forming structures like giant clusters. In
this respect, the collective dynamics of active semiflexible filaments
provides a rich framework where different non-equilibrium behav-
ior can be accessed. This can prove useful both in experimental
applications and in distinguishing the rich behavior of biopolymers
and filamentous structures in biology.

The changing cluster dynamics with activity and flexibility can
be understood by analysing the collisions (see Movie M1 in the
ESI). An increase in activity leads to an increased number of colli-
sions which trap filaments for a duration that is proportional with
their persistence in orientation. As a result, filaments form clusters
with increasing activity due to collision-mediated self-trapping.
However, the effect of collisions depends strongly on the flexibility
of filaments. When filaments are stiff, they are structurally more
elongated. In this regime, colliding filaments align in parallel or
anti-parallel directions depending on the angle of collision being
acute or obtuse, respectively. Flexible filaments, on the other hand,
are easier to be bent upon collisions, which makes them reorient
frequently. Therefore, clustering gets enhanced with increasing
rigidity, but decreases again at high levels of activity. It can be
argued that the cluster formation is a density-driven effect for flex-
ible filaments, hence the formation of small and transient clusters,
whereas it is an alignment-driven effect for stiff filaments, hence
the large and persistent clusters.

It is important to highlight the differences between self-
propelled rigid rods and semiflexible filaments. Stiff filaments are
elongated in a way that resembles rigid rods. Hence, both sys-
tems form giant clusters as a result of alignment upon collisions.
However, flexibility of filaments still reflects itself even for £, >> L.
Filaments can penetrate through antagonistically oriented clusters,
as they can bend, which alters the stress accumulation mechanism
in the ensemble. Therefore, some of the phases observed for ac-
tive rigid rods, like giant jammed structures,2>> disappear for
semiflexible filaments. A similar behavior of non-monotonic clus-
ter size with self-propulsion has also been observed in ensembles
of self-propelled overlapping rods and self-propelled colloids with
short-range attractive interactions;=22057 however, the underly-
ing mechanisms are different.

Another important difference of semiflexible filaments and rigid

rods is that, when the leading tip of a filament turns by bending,
the body of the filament bends in the same direction. As a result of
this ease in reorientation, stiffer filaments can easily rotate even at
very high rigidities. Consequently, giant clusters of filaments are
often in curved and meandering form and change their direction
of motion frequently (see Movie M4 in the ESI). Such clustering
dynamics is very similar to the dynamics of bird flocks and fish
schools, where the collective dynamics is set by a number of lead-
ers. 53154

The observed phases in the active semiflexible filament col-
lective can be used in a tunable fashion. The system can be
switched from a moving state with aligned filaments moving
together to a frozen steady state with coiled filaments. This
parameter-dependent effect can be used as a tunable switch in
micro- and nano-technology, for which the first steps have already
been made.?!' Besides the possible technological function, this type
of self-organization also has a functional role in living matter. In a
plant cell, microtubules form cortical arrays, which are curved and
rotating structures in a two-dimensional plane along the cell wall,
to provide stability and growth to the cell wall.2? Slender bacteria
are observed to form spiral structures through mechanical interac-
tions when put in a bath of shorter cells.1Z With their structural
and dynamical resemblance to active semiflexible polymers, there
is a plethora of biological systems like actin filaments and micro-
tubules on molecular motor carpets, which can self-organize into
spirals or into rotating clusters based on their level of rigidity, ac-
tivity and aspect ratio. Our work can help in construction of such
in-vitro experiments. Additional effects like hydrodynamic interac-
tions may need to be included in the interpretation of experimental
results on microtubules in motility assays.44 Simulation studies of
active polar semiflexible filaments in the low-density regime in-
dicate a qualitatively similar behavior with and without hydrody-
namics. 226

5 Summary

We have studied the collective dynamics of active semiflexible fil-
aments in a two-dimensional system with steric interactions. With
a minimal active polymer model, we are able to capture rich dy-
namical behavior. The collective dynamics has the hallmarks of
a passive homogeneous melt for low propulsion strengths. When
the propulsion is increased, filaments organize in small and tran-
sient clusters similar to the dynamical clusters observed in active
point particles. As the rigidity is increased, we find that filaments
form giant clusters like self-propelled rigid rods, when they are
propelled at intermediate levels of activity. Compared with rods,
clustering is not homogeneous with activity due to the deformation
of filaments upon collisions. The aspect ratio of filaments plays an
important role in the dynamics of strongly propelled and flexible
filaments. Such filaments self-organize in different configurations
of spiral aggregates in which they perform diffusive motion. At
high densities, we distinguish three phases: At low activity and
low rigidity, filaments are jammed in their initial configurations.
With increasing activity, filaments break out of the cages. At in-
termediate levels of activity, filaments form nematic lanes. At high
activity, laning becomes instable and filaments move in smaller ne-
matic bands. The collisions between these nematic bends result in
a turbulent regime.
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